Optimal. Leaf size=23 \[ 6-x-\log \left (\log \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 2, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6688, 6684} \begin {gather*} -\log \left (\log \left (x^2+\log \left (\frac {1}{4} (3-x)^2\right )\right )\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-\frac {2 \left (1-3 x+x^2\right )}{(-3+x) \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right ) \log \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right )}\right ) \, dx\\ &=-x-2 \int \frac {1-3 x+x^2}{(-3+x) \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right ) \log \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right )} \, dx\\ &=-x-\log \left (\log \left (x^2+\log \left (\frac {1}{4} (3-x)^2\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 22, normalized size = 0.96 \begin {gather*} -x-\log \left (\log \left (x^2+\log \left (\frac {1}{4} (-3+x)^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 23, normalized size = 1.00 \begin {gather*} -x - \log \left (\log \left (x^{2} + \log \left (\frac {1}{4} \, x^{2} - \frac {3}{2} \, x + \frac {9}{4}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, x^{2} + {\left (x^{3} - 3 \, x^{2} + {\left (x - 3\right )} \log \left (\frac {1}{4} \, x^{2} - \frac {3}{2} \, x + \frac {9}{4}\right )\right )} \log \left (x^{2} + \log \left (\frac {1}{4} \, x^{2} - \frac {3}{2} \, x + \frac {9}{4}\right )\right ) - 6 \, x + 2}{{\left (x^{3} - 3 \, x^{2} + {\left (x - 3\right )} \log \left (\frac {1}{4} \, x^{2} - \frac {3}{2} \, x + \frac {9}{4}\right )\right )} \log \left (x^{2} + \log \left (\frac {1}{4} \, x^{2} - \frac {3}{2} \, x + \frac {9}{4}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.04
method | result | size |
norman | \(-x -\ln \left (\ln \left (\ln \left (\frac {1}{4} x^{2}-\frac {3}{2} x +\frac {9}{4}\right )+x^{2}\right )\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 22, normalized size = 0.96 \begin {gather*} -x - \log \left (\log \left (x^{2} - 2 \, \log \relax (2) + 2 \, \log \left (x - 3\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.80, size = 23, normalized size = 1.00 \begin {gather*} -x-\ln \left (\ln \left (\ln \left (\frac {x^2}{4}-\frac {3\,x}{2}+\frac {9}{4}\right )+x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 24, normalized size = 1.04 \begin {gather*} - x - \log {\left (\log {\left (x^{2} + \log {\left (\frac {x^{2}}{4} - \frac {3 x}{2} + \frac {9}{4} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________