Optimal. Leaf size=27 \[ -1-4 x+36 \left (x^2+\frac {1}{x \left (-x^2+\log (x)\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-72+216 x^2+72 x^5-72 x^7+4 x^9-144 x^{12}+\left (-72-72 x^3-12 x^7+432 x^{10}\right ) \log (x)+\left (72 x^3+12 x^5-432 x^8\right ) \log ^2(x)+\left (-4 x^3+144 x^6\right ) \log ^3(x)}{-x^9+3 x^7 \log (x)-3 x^5 \log ^2(x)+x^3 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {72-216 x^2-72 x^5+72 x^7-4 x^9+144 x^{12}-\left (-72-72 x^3-12 x^7+432 x^{10}\right ) \log (x)-\left (72 x^3+12 x^5-432 x^8\right ) \log ^2(x)-\left (-4 x^3+144 x^6\right ) \log ^3(x)}{x^3 \left (x^2-\log (x)\right )^3} \, dx\\ &=\int \left (4 \left (-1+36 x^3\right )-\frac {72 \left (-1+2 x^2\right )}{x^3 \left (x^2-\log (x)\right )^3}+\frac {72 \left (-1-x^3+2 x^5\right )}{x^3 \left (x^2-\log (x)\right )^2}-\frac {72}{x^2-\log (x)}\right ) \, dx\\ &=4 \int \left (-1+36 x^3\right ) \, dx-72 \int \frac {-1+2 x^2}{x^3 \left (x^2-\log (x)\right )^3} \, dx+72 \int \frac {-1-x^3+2 x^5}{x^3 \left (x^2-\log (x)\right )^2} \, dx-72 \int \frac {1}{x^2-\log (x)} \, dx\\ &=-4 x+36 x^4-72 \int \left (-\frac {1}{x^3 \left (x^2-\log (x)\right )^3}+\frac {2}{x \left (x^2-\log (x)\right )^3}\right ) \, dx+72 \int \left (-\frac {1}{\left (x^2-\log (x)\right )^2}-\frac {1}{x^3 \left (x^2-\log (x)\right )^2}+\frac {2 x^2}{\left (x^2-\log (x)\right )^2}\right ) \, dx-72 \int \frac {1}{x^2-\log (x)} \, dx\\ &=-4 x+36 x^4+72 \int \frac {1}{x^3 \left (x^2-\log (x)\right )^3} \, dx-72 \int \frac {1}{\left (x^2-\log (x)\right )^2} \, dx-72 \int \frac {1}{x^3 \left (x^2-\log (x)\right )^2} \, dx-72 \int \frac {1}{x^2-\log (x)} \, dx-144 \int \frac {1}{x \left (x^2-\log (x)\right )^3} \, dx+144 \int \frac {x^2}{\left (x^2-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 39, normalized size = 1.44 \begin {gather*} 4 \left (-x+9 x^4+\frac {9}{x^2 \left (-x^2+\log (x)\right )^2}+\frac {18 x}{-x^2+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 76, normalized size = 2.81 \begin {gather*} \frac {4 \, {\left (9 \, x^{10} - x^{7} - 18 \, x^{5} + {\left (9 \, x^{6} - x^{3}\right )} \log \relax (x)^{2} - 2 \, {\left (9 \, x^{8} - x^{5} - 9 \, x^{3}\right )} \log \relax (x) + 9\right )}}{x^{6} - 2 \, x^{4} \log \relax (x) + x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 46, normalized size = 1.70 \begin {gather*} 36 \, x^{4} - 4 \, x - \frac {36 \, {\left (2 \, x^{5} - 2 \, x^{3} \log \relax (x) - 1\right )}}{x^{6} - 2 \, x^{4} \log \relax (x) + x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 39, normalized size = 1.44
method | result | size |
risch | \(36 x^{4}-4 x -\frac {36 \left (2 x^{5}-2 x^{3} \ln \relax (x )-1\right )}{x^{2} \left (x^{2}-\ln \relax (x )\right )^{2}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 76, normalized size = 2.81 \begin {gather*} \frac {4 \, {\left (9 \, x^{10} - x^{7} - 18 \, x^{5} + {\left (9 \, x^{6} - x^{3}\right )} \log \relax (x)^{2} - 2 \, {\left (9 \, x^{8} - x^{5} - 9 \, x^{3}\right )} \log \relax (x) + 9\right )}}{x^{6} - 2 \, x^{4} \log \relax (x) + x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.66, size = 284, normalized size = 10.52 \begin {gather*} \frac {\frac {36\,\left (6\,x^9-7\,x^7+5\,x^5+12\,x^4-x^3-6\,x^2+1\right )}{x^2\,{\left (2\,x^2-1\right )}^3}-\frac {36\,\ln \relax (x)\,\left (6\,x^5-x^3+8\,x^2-2\right )}{x^2\,{\left (2\,x^2-1\right )}^3}+\frac {36\,x\,{\ln \relax (x)}^2\,\left (2\,x^2+1\right )}{{\left (2\,x^2-1\right )}^3}}{\ln \relax (x)-x^2}-4\,x+\frac {27\,x^7-\frac {81\,x^5}{2}+9\,x^3-36\,x^2+9}{-x^8+\frac {3\,x^6}{2}-\frac {3\,x^4}{4}+\frac {x^2}{8}}+36\,x^4+\frac {\frac {36\,x\,{\ln \relax (x)}^2}{2\,x^2-1}+\frac {36\,\left (-x^7+x^5+3\,x^2-1\right )}{x^2\,\left (2\,x^2-1\right )}-\frac {36\,\ln \relax (x)\,\left (x^3+1\right )}{x^2\,\left (2\,x^2-1\right )}}{x^4-2\,x^2\,\ln \relax (x)+{\ln \relax (x)}^2}-\frac {\ln \relax (x)\,\left (9\,x^3+\frac {9\,x}{2}\right )}{x^6-\frac {3\,x^4}{2}+\frac {3\,x^2}{4}-\frac {1}{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 42, normalized size = 1.56 \begin {gather*} 36 x^{4} - 4 x + \frac {- 72 x^{5} + 72 x^{3} \log {\relax (x )} + 36}{x^{6} - 2 x^{4} \log {\relax (x )} + x^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________