Optimal. Leaf size=24 \[ x \left (3+x+x^2-\frac {\log \left (\frac {5}{3 x}\right )}{e^4 x^3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 14, 2304} \begin {gather*} x^3+x^2-\frac {\log \left (\frac {5}{3 x}\right )}{e^4 x^2}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {1+e^4 \left (3 x^3+2 x^4+3 x^5\right )+2 \log \left (\frac {5}{3 x}\right )}{x^3} \, dx}{e^4}\\ &=\frac {\int \left (\frac {1+3 e^4 x^3+2 e^4 x^4+3 e^4 x^5}{x^3}+\frac {2 \log \left (\frac {5}{3 x}\right )}{x^3}\right ) \, dx}{e^4}\\ &=\frac {\int \frac {1+3 e^4 x^3+2 e^4 x^4+3 e^4 x^5}{x^3} \, dx}{e^4}+\frac {2 \int \frac {\log \left (\frac {5}{3 x}\right )}{x^3} \, dx}{e^4}\\ &=\frac {1}{2 e^4 x^2}-\frac {\log \left (\frac {5}{3 x}\right )}{e^4 x^2}+\frac {\int \left (3 e^4+\frac {1}{x^3}+2 e^4 x+3 e^4 x^2\right ) \, dx}{e^4}\\ &=3 x+x^2+x^3-\frac {\log \left (\frac {5}{3 x}\right )}{e^4 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.08 \begin {gather*} 3 x+x^2+x^3-\frac {\log \left (\frac {5}{3 x}\right )}{e^4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 30, normalized size = 1.25 \begin {gather*} \frac {{\left ({\left (x^{5} + x^{4} + 3 \, x^{3}\right )} e^{4} - \log \left (\frac {5}{3 \, x}\right )\right )} e^{\left (-4\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 33, normalized size = 1.38 \begin {gather*} x^{3} {\left (\frac {e^{4}}{x} + \frac {3 \, e^{4}}{x^{2}} - \frac {\log \left (\frac {5}{3 \, x}\right )}{x^{5}} + e^{4}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.96
method | result | size |
risch | \(-\frac {{\mathrm e}^{-4} \ln \left (\frac {5}{3 x}\right )}{x^{2}}+x \left (x^{2}+x +3\right )\) | \(23\) |
norman | \(\frac {x^{4}+x^{5}+3 x^{3}-{\mathrm e}^{-4} \ln \left (\frac {5}{3 x}\right )}{x^{2}}\) | \(29\) |
default | \({\mathrm e}^{-4} \left (-\frac {\ln \left (\frac {5}{3 x}\right )}{x^{2}}+3 x \,{\mathrm e}^{4}+x^{2} {\mathrm e}^{4}+x^{3} {\mathrm e}^{4}\right )\) | \(35\) |
derivativedivides | \(-{\mathrm e}^{-4} \left (\frac {\ln \left (\frac {5}{3 x}\right )}{x^{2}}-3 x \,{\mathrm e}^{4}-x^{2} {\mathrm e}^{4}-x^{3} {\mathrm e}^{4}\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 32, normalized size = 1.33 \begin {gather*} {\left (x^{3} e^{4} + x^{2} e^{4} + 3 \, x e^{4} - \frac {\log \left (\frac {5}{3 \, x}\right )}{x^{2}}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 23, normalized size = 0.96 \begin {gather*} 3\,x+x^2+x^3-\frac {{\mathrm {e}}^{-4}\,\ln \left (\frac {5}{3\,x}\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.92 \begin {gather*} x^{3} + x^{2} + 3 x - \frac {\log {\left (\frac {5}{3 x} \right )}}{x^{2} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________