Optimal. Leaf size=29 \[ -\frac {4 e^{e^{x+x \log (x)}+i \pi +x}}{5 (-1-\log (3))} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 24, normalized size of antiderivative = 0.83, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 6706} \begin {gather*} \frac {4 e^{e^x x^x+x+i \pi }}{5+\log (243)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 \int e^{e^{x+x \log (x)}+i \pi +x} \left (1+e^{x+x \log (x)} (2+\log (x))\right ) \, dx}{5+\log (243)}\\ &=\frac {4 e^{i \pi +x+e^x x^x}}{5+\log (243)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 19, normalized size = 0.66 \begin {gather*} -\frac {4 e^{x+e^x x^x}}{5+\log (243)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 19, normalized size = 0.66 \begin {gather*} e^{\left (x + e^{\left (x \log \relax (x) + x\right )} + \log \left (-\frac {4}{5 \, {\left (\log \relax (3) + 1\right )}}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 19, normalized size = 0.66 \begin {gather*} e^{\left (x + e^{\left (x \log \relax (x) + x\right )} + \log \left (-\frac {4}{5 \, {\left (\log \relax (3) + 1\right )}}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.62
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{x^{x} {\mathrm e}^{x}+x}}{5 \left (\ln \relax (3)+1\right )}\) | \(18\) |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{x \ln \relax (x )+x}+\ln \left (-\frac {4}{5 \ln \relax (3)+5}\right )+x}\) | \(22\) |
default | \({\mathrm e}^{{\mathrm e}^{x \ln \relax (x )+x}+\ln \left (-\frac {4}{5 \ln \relax (3)+5}\right )+x}\) | \(22\) |
norman | \({\mathrm e}^{{\mathrm e}^{x \ln \relax (x )+x}+\ln \left (-\frac {4}{5 \ln \relax (3)+5}\right )+x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 0.62 \begin {gather*} -\frac {4 \, e^{\left (x + e^{\left (x \log \relax (x) + x\right )}\right )}}{5 \, {\left (\log \relax (3) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 17, normalized size = 0.59 \begin {gather*} -\frac {4\,{\mathrm {e}}^x\,{\mathrm {e}}^{x^x\,{\mathrm {e}}^x}}{\ln \left (243\right )+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 20, normalized size = 0.69 \begin {gather*} - \frac {4 e^{x + e^{x \log {\relax (x )} + x}}}{5 + 5 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________