Optimal. Leaf size=27 \[ e^{e^5} x \left (-e^2-e^{x^2}+x^{\frac {1}{6+x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^5} \left (e^2 \left (-36-12 x-x^2\right )+e^{x^2} \left (-36-12 x-73 x^2-24 x^3-2 x^4\right )\right )+x^{\frac {1}{6+x}} \left (e^{e^5} \left (42+13 x+x^2\right )-e^{e^5} x \log (x)\right )}{36+12 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^5} \left (e^2 \left (-36-12 x-x^2\right )+e^{x^2} \left (-36-12 x-73 x^2-24 x^3-2 x^4\right )\right )+x^{\frac {1}{6+x}} \left (e^{e^5} \left (42+13 x+x^2\right )-e^{e^5} x \log (x)\right )}{(6+x)^2} \, dx\\ &=\int \left (-e^{e^5} \left (e^2+e^{x^2}+2 e^{x^2} x^2\right )+\frac {e^{e^5} x^{\frac {1}{6+x}} \left (42+13 x+x^2-x \log (x)\right )}{(6+x)^2}\right ) \, dx\\ &=-\left (e^{e^5} \int \left (e^2+e^{x^2}+2 e^{x^2} x^2\right ) \, dx\right )+e^{e^5} \int \frac {x^{\frac {1}{6+x}} \left (42+13 x+x^2-x \log (x)\right )}{(6+x)^2} \, dx\\ &=-e^{2+e^5} x-e^{e^5} \int e^{x^2} \, dx+e^{e^5} \int \left (\frac {x^{\frac {1}{6+x}} (7+x)}{6+x}-\frac {x^{1+\frac {1}{6+x}} \log (x)}{(6+x)^2}\right ) \, dx-\left (2 e^{e^5}\right ) \int e^{x^2} x^2 \, dx\\ &=-e^{2+e^5} x-e^{e^5+x^2} x-\frac {1}{2} e^{e^5} \sqrt {\pi } \text {erfi}(x)+e^{e^5} \int e^{x^2} \, dx+e^{e^5} \int \frac {x^{\frac {1}{6+x}} (7+x)}{6+x} \, dx-e^{e^5} \int \frac {x^{1+\frac {1}{6+x}} \log (x)}{(6+x)^2} \, dx\\ &=-e^{2+e^5} x-e^{e^5+x^2} x+e^{e^5} \int \left (x^{\frac {1}{6+x}}+\frac {x^{\frac {1}{6+x}}}{6+x}\right ) \, dx-e^{e^5} \int \frac {x^{\frac {7+x}{6+x}} \log (x)}{(6+x)^2} \, dx\\ &=-e^{2+e^5} x-e^{e^5+x^2} x+e^{e^5} \int x^{\frac {1}{6+x}} \, dx+e^{e^5} \int \frac {x^{\frac {1}{6+x}}}{6+x} \, dx-e^{e^5} \int \frac {x^{\frac {7+x}{6+x}} \log (x)}{(6+x)^2} \, dx\\ &=-e^{2+e^5} x-e^{e^5+x^2} x+\frac {e^{e^5} x^{1+\frac {1}{6+x}} \, _2F_1\left (1,1+\frac {1}{6+x};2+\frac {1}{6+x};-\frac {x}{6}\right )}{6 \left (1+\frac {1}{6+x}\right )}+e^{e^5} \int x^{\frac {1}{6+x}} \, dx-e^{e^5} \int \frac {x^{\frac {7+x}{6+x}} \log (x)}{(6+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 26, normalized size = 0.96 \begin {gather*} -e^{e^5} x \left (e^2+e^{x^2}-x^{\frac {1}{6+x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 29, normalized size = 1.07 \begin {gather*} x x^{\left (\frac {1}{x + 6}\right )} e^{\left (e^{5}\right )} - {\left (x e^{2} + x e^{\left (x^{2}\right )}\right )} e^{\left (e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 41, normalized size = 1.52 \begin {gather*} x^{\frac {x}{x + 6}} x^{\frac {7}{x + 6}} e^{\left (e^{5}\right )} - x e^{\left (x^{2} + e^{5}\right )} - x e^{\left (e^{5} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 32, normalized size = 1.19
method | result | size |
risch | \(-x \,{\mathrm e}^{{\mathrm e}^{5}+2}-x \,{\mathrm e}^{x^{2}+{\mathrm e}^{5}}+{\mathrm e}^{{\mathrm e}^{5}} x \,x^{\frac {1}{x +6}}\) | \(32\) |
default | \(\frac {{\mathrm e}^{{\mathrm e}^{5}} x^{3} {\mathrm e}^{\frac {\ln \relax (x )}{x +6}}+36 x \,{\mathrm e}^{{\mathrm e}^{5}} {\mathrm e}^{\frac {\ln \relax (x )}{x +6}}+12 x^{2} {\mathrm e}^{{\mathrm e}^{5}} {\mathrm e}^{\frac {\ln \relax (x )}{x +6}}}{\left (x +6\right )^{2}}-{\mathrm e}^{{\mathrm e}^{5}} {\mathrm e}^{2} x -{\mathrm e}^{{\mathrm e}^{5}} x \,{\mathrm e}^{x^{2}}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 78, normalized size = 2.89 \begin {gather*} -x e^{\left (x^{2} + e^{5}\right )} + x e^{\left (\frac {\log \relax (x)}{x + 6} + e^{5}\right )} - {\left (x - \frac {36}{x + 6} - 12 \, \log \left (x + 6\right )\right )} e^{\left (e^{5} + 2\right )} - 12 \, {\left (\frac {6}{x + 6} + \log \left (x + 6\right )\right )} e^{\left (e^{5} + 2\right )} + \frac {36 \, e^{\left (e^{5} + 2\right )}}{x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 22, normalized size = 0.81 \begin {gather*} -x\,{\mathrm {e}}^{{\mathrm {e}}^5}\,\left ({\mathrm {e}}^{x^2}+{\mathrm {e}}^2-x^{\frac {1}{x+6}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________