Optimal. Leaf size=20 \[ \log \left (9-\frac {e^x}{3}+625 e^{-4 e} x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6684} \begin {gather*} \log \left (1875 x^2+e^{4 e} \left (27-e^x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (e^{4 e} \left (27-e^x\right )+1875 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 18, normalized size = 0.90 \begin {gather*} \log \left (e^{4 e} \left (-27+e^x\right )-1875 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 21, normalized size = 1.05 \begin {gather*} \log \left (-1875 \, x^{2} + e^{\left (x + 4 \, e\right )} - 27 \, e^{\left (4 \, e\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.05 \begin {gather*} \log \left (-1875 \, x^{2} + e^{\left (x + 4 \, e\right )} - 27 \, e^{\left (4 \, e\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.90
method | result | size |
derivativedivides | \(\ln \left (\left ({\mathrm e}^{x}-27\right ) {\mathrm e}^{4 \,{\mathrm e}}-1875 x^{2}\right )\) | \(18\) |
default | \(\ln \left (\left ({\mathrm e}^{x}-27\right ) {\mathrm e}^{4 \,{\mathrm e}}-1875 x^{2}\right )\) | \(18\) |
norman | \(\ln \left ({\mathrm e}^{x} {\mathrm e}^{4 \,{\mathrm e}}-27 \,{\mathrm e}^{4 \,{\mathrm e}}-1875 x^{2}\right )\) | \(23\) |
risch | \(\ln \left ({\mathrm e}^{x}-3 \left (9 \,{\mathrm e}^{4 \,{\mathrm e}}+625 x^{2}\right ) {\mathrm e}^{-4 \,{\mathrm e}}\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.90 \begin {gather*} \log \left (1875 \, x^{2} - {\left (e^{x} - 27\right )} e^{\left (4 \, e\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 23, normalized size = 1.15 \begin {gather*} \ln \left (27\,{\mathrm {e}}^{4\,\mathrm {e}}-{\mathrm {e}}^{x+4\,\mathrm {e}}+1875\,x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 26, normalized size = 1.30 \begin {gather*} \log {\left (\frac {- 1875 x^{2} - 27 e^{4 e}}{e^{4 e}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________