Optimal. Leaf size=21 \[ \log \left (\frac {3 \log (3)}{\left (-x+\log \left (\frac {4+2 x}{x}\right )\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 15, normalized size of antiderivative = 0.71, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6741, 6684} \begin {gather*} -2 \log \left (x-\log \left (\frac {4}{x}+2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-4 x-2 x^2}{x (2+x) \left (x-\log \left (2+\frac {4}{x}\right )\right )} \, dx\\ &=-2 \log \left (x-\log \left (2+\frac {4}{x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.01, size = 15, normalized size = 0.71 \begin {gather*} -2 \log \left (x-\log \left (2+\frac {4}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 16, normalized size = 0.76 \begin {gather*} -2 \, \log \left (-x + \log \left (\frac {2 \, {\left (x + 2\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 47, normalized size = 2.24 \begin {gather*} -2 \, \log \left (\frac {2 \, {\left (x + 2\right )} \log \left (\frac {2 \, {\left (x + 2\right )}}{x}\right )}{x} - 2 \, \log \left (\frac {2 \, {\left (x + 2\right )}}{x}\right ) - 4\right ) + 2 \, \log \left (\frac {2 \, {\left (x + 2\right )}}{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 0.86
method | result | size |
norman | \(-2 \ln \left (x -\ln \left (\frac {2 x +4}{x}\right )\right )\) | \(18\) |
risch | \(-2 \ln \left (\ln \left (\frac {2 x +4}{x}\right )-x \right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 17, normalized size = 0.81 \begin {gather*} -2 \, \log \left (-x + \log \relax (2) + \log \left (x + 2\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.92, size = 17, normalized size = 0.81 \begin {gather*} -2\,\ln \left (x-\ln \left (\frac {2\,x+4}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 14, normalized size = 0.67 \begin {gather*} - 2 \log {\left (- x + \log {\left (\frac {2 x + 4}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________