Optimal. Leaf size=21 \[ e^{-2 e^{-x} x^2 (5+x) \log ^2(5)} x \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x-e^{-x} \left (10 x^2+2 x^3\right ) \log ^2(5)} \left (e^x+\left (-20 x^2+4 x^3+2 x^4\right ) \log ^2(5)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) \left (e^x+\left (-20 x^2+4 x^3+2 x^4\right ) \log ^2(5)\right ) \, dx\\ &=\int \left (\exp \left (x-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right )+2 \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^2 \left (-10+2 x+x^2\right ) \log ^2(5)\right ) \, dx\\ &=\left (2 \log ^2(5)\right ) \int \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^2 \left (-10+2 x+x^2\right ) \, dx+\int \exp \left (x-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) \, dx\\ &=\left (2 \log ^2(5)\right ) \int \left (-10 \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^2+2 \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^3+\exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^4\right ) \, dx+\int e^{-2 e^{-x} x^2 (5+x) \log ^2(5)} \, dx\\ &=\left (2 \log ^2(5)\right ) \int \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^4 \, dx+\left (4 \log ^2(5)\right ) \int \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^3 \, dx-\left (20 \log ^2(5)\right ) \int \exp \left (-e^{-x} x \left (e^x+10 x \log ^2(5)+2 x^2 \log ^2(5)\right )\right ) x^2 \, dx+\int e^{-2 e^{-x} x^2 (5+x) \log ^2(5)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 21, normalized size = 1.00 \begin {gather*} e^{-2 e^{-x} x^2 (5+x) \log ^2(5)} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 31, normalized size = 1.48 \begin {gather*} x e^{\left (-{\left (2 \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (5)^{2} + x e^{x}\right )} e^{\left (-x\right )} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (2 \, {\left (x^{4} + 2 \, x^{3} - 10 \, x^{2}\right )} \log \relax (5)^{2} + e^{x}\right )} e^{\left (-2 \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (-x\right )} \log \relax (5)^{2} - x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 20, normalized size = 0.95
method | result | size |
risch | \(x \,{\mathrm e}^{-2 x^{2} \left (5+x \right ) \ln \relax (5)^{2} {\mathrm e}^{-x}}\) | \(20\) |
norman | \(x \,{\mathrm e}^{-\left (2 x^{3}+10 x^{2}\right ) \ln \relax (5)^{2} {\mathrm e}^{-x}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (2 \, {\left (x^{4} + 2 \, x^{3} - 10 \, x^{2}\right )} \log \relax (5)^{2} + e^{x}\right )} e^{\left (-2 \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (-x\right )} \log \relax (5)^{2} - x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.43, size = 30, normalized size = 1.43 \begin {gather*} x\,{\mathrm {e}}^{-2\,x^3\,{\mathrm {e}}^{-x}\,{\ln \relax (5)}^2}\,{\mathrm {e}}^{-10\,x^2\,{\mathrm {e}}^{-x}\,{\ln \relax (5)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 20, normalized size = 0.95 \begin {gather*} x e^{- \left (2 x^{3} + 10 x^{2}\right ) e^{- x} \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________