Optimal. Leaf size=28 \[ \frac {1}{5} (3+x) \left (10+x+x^2 \left (5-x-\log \left (-3+x+x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 201, normalized size of antiderivative = 7.18, number of steps used = 21, number of rules used = 7, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.117, Rules used = {6728, 1657, 632, 31, 2528, 2525, 800} \begin {gather*} -\frac {x^4}{5}+\frac {2 x^3}{5}+\frac {16 x^2}{5}-\frac {3}{5} x^2 \log \left (x^2+x-3\right )-\frac {1}{5} x^3 \log \left (x^2+x-3\right )+\frac {13 x}{5}-\frac {1}{10} \left (11+\sqrt {13}\right ) \log \left (2 x-\sqrt {13}+1\right )+\frac {3}{10} \left (7-\sqrt {13}\right ) \log \left (2 x-\sqrt {13}+1\right )-\frac {1}{5} \left (5-2 \sqrt {13}\right ) \log \left (2 x-\sqrt {13}+1\right )-\frac {1}{5} \left (5+2 \sqrt {13}\right ) \log \left (2 x+\sqrt {13}+1\right )+\frac {3}{10} \left (7+\sqrt {13}\right ) \log \left (2 x+\sqrt {13}+1\right )-\frac {1}{10} \left (11-\sqrt {13}\right ) \log \left (2 x+\sqrt {13}+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 800
Rule 1657
Rule 2525
Rule 2528
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-39-83 x+24 x^2+43 x^3-4 x^5}{5 \left (-3+x+x^2\right )}-\frac {3}{5} x (2+x) \log \left (-3+x+x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int \frac {-39-83 x+24 x^2+43 x^3-4 x^5}{-3+x+x^2} \, dx-\frac {3}{5} \int x (2+x) \log \left (-3+x+x^2\right ) \, dx\\ &=\frac {1}{5} \int \left (9+27 x+4 x^2-4 x^3-\frac {12+11 x}{-3+x+x^2}\right ) \, dx-\frac {3}{5} \int \left (2 x \log \left (-3+x+x^2\right )+x^2 \log \left (-3+x+x^2\right )\right ) \, dx\\ &=\frac {9 x}{5}+\frac {27 x^2}{10}+\frac {4 x^3}{15}-\frac {x^4}{5}-\frac {1}{5} \int \frac {12+11 x}{-3+x+x^2} \, dx-\frac {3}{5} \int x^2 \log \left (-3+x+x^2\right ) \, dx-\frac {6}{5} \int x \log \left (-3+x+x^2\right ) \, dx\\ &=\frac {9 x}{5}+\frac {27 x^2}{10}+\frac {4 x^3}{15}-\frac {x^4}{5}-\frac {3}{5} x^2 \log \left (-3+x+x^2\right )-\frac {1}{5} x^3 \log \left (-3+x+x^2\right )+\frac {1}{5} \int \frac {x^3 (1+2 x)}{-3+x+x^2} \, dx+\frac {3}{5} \int \frac {x^2 (1+2 x)}{-3+x+x^2} \, dx-\frac {1}{10} \left (11-\sqrt {13}\right ) \int \frac {1}{\frac {1}{2}+\frac {\sqrt {13}}{2}+x} \, dx-\frac {1}{10} \left (11+\sqrt {13}\right ) \int \frac {1}{\frac {1}{2}-\frac {\sqrt {13}}{2}+x} \, dx\\ &=\frac {9 x}{5}+\frac {27 x^2}{10}+\frac {4 x^3}{15}-\frac {x^4}{5}-\frac {1}{10} \left (11+\sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )-\frac {1}{10} \left (11-\sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )-\frac {3}{5} x^2 \log \left (-3+x+x^2\right )-\frac {1}{5} x^3 \log \left (-3+x+x^2\right )+\frac {1}{5} \int \left (7-x+2 x^2+\frac {21-10 x}{-3+x+x^2}\right ) \, dx+\frac {3}{5} \int \left (-1+2 x-\frac {3-7 x}{-3+x+x^2}\right ) \, dx\\ &=\frac {13 x}{5}+\frac {16 x^2}{5}+\frac {2 x^3}{5}-\frac {x^4}{5}-\frac {1}{10} \left (11+\sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )-\frac {1}{10} \left (11-\sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )-\frac {3}{5} x^2 \log \left (-3+x+x^2\right )-\frac {1}{5} x^3 \log \left (-3+x+x^2\right )+\frac {1}{5} \int \frac {21-10 x}{-3+x+x^2} \, dx-\frac {3}{5} \int \frac {3-7 x}{-3+x+x^2} \, dx\\ &=\frac {13 x}{5}+\frac {16 x^2}{5}+\frac {2 x^3}{5}-\frac {x^4}{5}-\frac {1}{10} \left (11+\sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )-\frac {1}{10} \left (11-\sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )-\frac {3}{5} x^2 \log \left (-3+x+x^2\right )-\frac {1}{5} x^3 \log \left (-3+x+x^2\right )+\frac {1}{5} \left (-5-2 \sqrt {13}\right ) \int \frac {1}{\frac {1}{2}+\frac {\sqrt {13}}{2}+x} \, dx+\frac {1}{10} \left (3 \left (7-\sqrt {13}\right )\right ) \int \frac {1}{\frac {1}{2}-\frac {\sqrt {13}}{2}+x} \, dx+\frac {1}{10} \left (3 \left (7+\sqrt {13}\right )\right ) \int \frac {1}{\frac {1}{2}+\frac {\sqrt {13}}{2}+x} \, dx+\frac {1}{5} \left (-5+2 \sqrt {13}\right ) \int \frac {1}{\frac {1}{2}-\frac {\sqrt {13}}{2}+x} \, dx\\ &=\frac {13 x}{5}+\frac {16 x^2}{5}+\frac {2 x^3}{5}-\frac {x^4}{5}-\frac {1}{5} \left (5-2 \sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )+\frac {3}{10} \left (7-\sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )-\frac {1}{10} \left (11+\sqrt {13}\right ) \log \left (1-\sqrt {13}+2 x\right )-\frac {1}{10} \left (11-\sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )+\frac {3}{10} \left (7+\sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )-\frac {1}{5} \left (5+2 \sqrt {13}\right ) \log \left (1+\sqrt {13}+2 x\right )-\frac {3}{5} x^2 \log \left (-3+x+x^2\right )-\frac {1}{5} x^3 \log \left (-3+x+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 47, normalized size = 1.68 \begin {gather*} \frac {1}{5} \left (13 x+16 x^2+2 x^3-x^4-3 x^2 \log \left (-3+x+x^2\right )-x^3 \log \left (-3+x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.38, size = 37, normalized size = 1.32 \begin {gather*} -\frac {1}{5} \, x^{4} + \frac {2}{5} \, x^{3} + \frac {16}{5} \, x^{2} - \frac {1}{5} \, {\left (x^{3} + 3 \, x^{2}\right )} \log \left (x^{2} + x - 3\right ) + \frac {13}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 37, normalized size = 1.32 \begin {gather*} -\frac {1}{5} \, x^{4} + \frac {2}{5} \, x^{3} + \frac {16}{5} \, x^{2} - \frac {1}{5} \, {\left (x^{3} + 3 \, x^{2}\right )} \log \left (x^{2} + x - 3\right ) + \frac {13}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 39, normalized size = 1.39
method | result | size |
risch | \(\left (-\frac {1}{5} x^{3}-\frac {3}{5} x^{2}\right ) \ln \left (x^{2}+x -3\right )-\frac {x^{4}}{5}+\frac {2 x^{3}}{5}+\frac {16 x^{2}}{5}+\frac {13 x}{5}\) | \(39\) |
default | \(-\frac {x^{4}}{5}+\frac {2 x^{3}}{5}+\frac {16 x^{2}}{5}+\frac {13 x}{5}-\frac {\ln \left (x^{2}+x -3\right ) x^{3}}{5}-\frac {3 \ln \left (x^{2}+x -3\right ) x^{2}}{5}\) | \(44\) |
norman | \(-\frac {x^{4}}{5}+\frac {2 x^{3}}{5}+\frac {16 x^{2}}{5}+\frac {13 x}{5}-\frac {\ln \left (x^{2}+x -3\right ) x^{3}}{5}-\frac {3 \ln \left (x^{2}+x -3\right ) x^{2}}{5}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 49, normalized size = 1.75 \begin {gather*} -\frac {1}{5} \, x^{4} + \frac {2}{5} \, x^{3} + \frac {16}{5} \, x^{2} - \frac {1}{10} \, {\left (2 \, x^{3} + 6 \, x^{2} - 11\right )} \log \left (x^{2} + x - 3\right ) + \frac {13}{5} \, x - \frac {11}{10} \, \log \left (x^{2} + x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 41, normalized size = 1.46 \begin {gather*} \frac {13\,x}{5}-x^3\,\left (\frac {\ln \left (x^2+x-3\right )}{5}-\frac {2}{5}\right )-x^2\,\left (\frac {3\,\ln \left (x^2+x-3\right )}{5}-\frac {16}{5}\right )-\frac {x^4}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 44, normalized size = 1.57 \begin {gather*} - \frac {x^{4}}{5} + \frac {2 x^{3}}{5} + \frac {16 x^{2}}{5} + \frac {13 x}{5} + \left (- \frac {x^{3}}{5} - \frac {3 x^{2}}{5}\right ) \log {\left (x^{2} + x - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________