Optimal. Leaf size=31 \[ \frac {x+4 \left (-4+x^2\right )}{\frac {3}{4} \left (4-e^{2 x^2}\right )+x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48+896 x-16 x^2+e^{2 x^2} \left (-12-864 x+48 x^2+192 x^3\right )}{144+9 e^{4 x^2}+96 x^2+16 x^4+e^{2 x^2} \left (-72-24 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48+896 x-16 x^2+e^{2 x^2} \left (-12-864 x+48 x^2+192 x^3\right )}{\left (12-3 e^{2 x^2}+4 x^2\right )^2} \, dx\\ &=\int \left (\frac {4 \left (-1-72 x+4 x^2+16 x^3\right )}{-12+3 e^{2 x^2}-4 x^2}+\frac {32 x \left (-80+5 x-12 x^2+2 x^3+8 x^4\right )}{\left (12-3 e^{2 x^2}+4 x^2\right )^2}\right ) \, dx\\ &=4 \int \frac {-1-72 x+4 x^2+16 x^3}{-12+3 e^{2 x^2}-4 x^2} \, dx+32 \int \frac {x \left (-80+5 x-12 x^2+2 x^3+8 x^4\right )}{\left (12-3 e^{2 x^2}+4 x^2\right )^2} \, dx\\ &=4 \int \left (-\frac {1}{-12+3 e^{2 x^2}-4 x^2}+\frac {72 x}{12-3 e^{2 x^2}+4 x^2}-\frac {4 x^2}{12-3 e^{2 x^2}+4 x^2}-\frac {16 x^3}{12-3 e^{2 x^2}+4 x^2}\right ) \, dx+32 \int \left (\frac {5 x^2}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2}+\frac {2 x^4}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2}-\frac {80 x}{\left (12-3 e^{2 x^2}+4 x^2\right )^2}-\frac {12 x^3}{\left (12-3 e^{2 x^2}+4 x^2\right )^2}+\frac {8 x^5}{\left (12-3 e^{2 x^2}+4 x^2\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {1}{-12+3 e^{2 x^2}-4 x^2} \, dx\right )-16 \int \frac {x^2}{12-3 e^{2 x^2}+4 x^2} \, dx+64 \int \frac {x^4}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx-64 \int \frac {x^3}{12-3 e^{2 x^2}+4 x^2} \, dx+160 \int \frac {x^2}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx+256 \int \frac {x^5}{\left (12-3 e^{2 x^2}+4 x^2\right )^2} \, dx+288 \int \frac {x}{12-3 e^{2 x^2}+4 x^2} \, dx-384 \int \frac {x^3}{\left (12-3 e^{2 x^2}+4 x^2\right )^2} \, dx-2560 \int \frac {x}{\left (12-3 e^{2 x^2}+4 x^2\right )^2} \, dx\\ &=-\left (4 \int \frac {1}{-12+3 e^{2 x^2}-4 x^2} \, dx\right )-16 \int \frac {x^2}{12-3 e^{2 x^2}+4 x^2} \, dx-32 \operatorname {Subst}\left (\int \frac {x}{12-3 e^{2 x}+4 x} \, dx,x,x^2\right )+64 \int \frac {x^4}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx+128 \operatorname {Subst}\left (\int \frac {x^2}{\left (3 e^{2 x}-4 (3+x)\right )^2} \, dx,x,x^2\right )+144 \operatorname {Subst}\left (\int \frac {1}{12-3 e^{2 x}+4 x} \, dx,x,x^2\right )+160 \int \frac {x^2}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx-192 \operatorname {Subst}\left (\int \frac {x}{\left (3 e^{2 x}-4 (3+x)\right )^2} \, dx,x,x^2\right )-1280 \operatorname {Subst}\left (\int \frac {1}{\left (12-3 e^{2 x}+4 x\right )^2} \, dx,x,x^2\right )\\ &=-\left (4 \int \frac {1}{-12+3 e^{2 x^2}-4 x^2} \, dx\right )-16 \int \frac {x^2}{12-3 e^{2 x^2}+4 x^2} \, dx-32 \operatorname {Subst}\left (\int \frac {x}{12-3 e^{2 x}+4 x} \, dx,x,x^2\right )+64 \int \frac {x^4}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx+72 \operatorname {Subst}\left (\int \frac {1}{12-3 e^x+2 x} \, dx,x,2 x^2\right )+128 \operatorname {Subst}\left (\int \frac {x^2}{\left (3 e^{2 x}-4 (3+x)\right )^2} \, dx,x,x^2\right )+160 \int \frac {x^2}{\left (-12+3 e^{2 x^2}-4 x^2\right )^2} \, dx-192 \operatorname {Subst}\left (\int \frac {x}{\left (3 e^{2 x}-4 (3+x)\right )^2} \, dx,x,x^2\right )-640 \operatorname {Subst}\left (\int \frac {1}{\left (12-3 e^x+2 x\right )^2} \, dx,x,2 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 30, normalized size = 0.97 \begin {gather*} \frac {4 \left (16-x-4 x^2\right )}{-12+3 e^{2 x^2}-4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 27, normalized size = 0.87 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + x - 16\right )}}{4 \, x^{2} - 3 \, e^{\left (2 \, x^{2}\right )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 27, normalized size = 0.87 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + x - 16\right )}}{4 \, x^{2} - 3 \, e^{\left (2 \, x^{2}\right )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 0.90
method | result | size |
risch | \(\frac {16 x^{2}+4 x -64}{4 x^{2}-3 \,{\mathrm e}^{2 x^{2}}+12}\) | \(28\) |
norman | \(\frac {16 x^{2}+4 x -64}{4 x^{2}-3 \,{\mathrm e}^{2 x^{2}}+12}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 27, normalized size = 0.87 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + x - 16\right )}}{4 \, x^{2} - 3 \, e^{\left (2 \, x^{2}\right )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 28, normalized size = 0.90 \begin {gather*} \frac {16\,x^2+4\,x-64}{4\,x^2-3\,{\mathrm {e}}^{2\,x^2}+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.77 \begin {gather*} \frac {- 16 x^{2} - 4 x + 64}{- 4 x^{2} + 3 e^{2 x^{2}} - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________