Optimal. Leaf size=28 \[ \frac {3+2 x}{x^2 \left (-5+e^x+2 x-2 (4+x-\log (3))\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {78+26 x+e^x \left (-6-5 x-2 x^2\right )+(-12-4 x) \log (3)}{169 x^3+e^{2 x} x^3-52 x^3 \log (3)+4 x^3 \log ^2(3)+e^x \left (-26 x^3+4 x^3 \log (3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {78+26 x+e^x \left (-6-5 x-2 x^2\right )+(-12-4 x) \log (3)}{e^{2 x} x^3+x^3 (169-52 \log (3))+4 x^3 \log ^2(3)+e^x \left (-26 x^3+4 x^3 \log (3)\right )} \, dx\\ &=\int \frac {78+26 x+e^x \left (-6-5 x-2 x^2\right )+(-12-4 x) \log (3)}{e^{2 x} x^3+e^x \left (-26 x^3+4 x^3 \log (3)\right )+x^3 \left (169-52 \log (3)+4 \log ^2(3)\right )} \, dx\\ &=\int \frac {-e^x \left (6+5 x+2 x^2\right )-2 (3+x) (-13+\log (9))}{x^3 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2} \, dx\\ &=\int \left (\frac {-6-5 x-2 x^2}{x^3 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )}+\frac {-39-x (26-\log (81))+\log (729)}{x^2 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2}\right ) \, dx\\ &=\int \frac {-6-5 x-2 x^2}{x^3 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )} \, dx+\int \frac {-39-x (26-\log (81))+\log (729)}{x^2 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2} \, dx\\ &=\int \left (\frac {6}{x^3 \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )}+\frac {5}{x^2 \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )}+\frac {2}{x \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )}\right ) \, dx+\int \left (\frac {-26+\log (81)}{x \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2}+\frac {-39+\log (729)}{x^2 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{x \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )} \, dx+5 \int \frac {1}{x^2 \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )} \, dx+6 \int \frac {1}{x^3 \left (-e^x+13 \left (1-\frac {2 \log (3)}{13}\right )\right )} \, dx+(-26+\log (81)) \int \frac {1}{x \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2} \, dx+(-39+\log (729)) \int \frac {1}{x^2 \left (e^x-13 \left (1-\frac {2 \log (3)}{13}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 19, normalized size = 0.68 \begin {gather*} -\frac {-3-2 x}{x^2 \left (-13+e^x+\log (9)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 27, normalized size = 0.96 \begin {gather*} \frac {2 \, x + 3}{x^{2} e^{x} + 2 \, x^{2} \log \relax (3) - 13 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 27, normalized size = 0.96 \begin {gather*} \frac {2 \, x + 3}{x^{2} e^{x} + 2 \, x^{2} \log \relax (3) - 13 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 20, normalized size = 0.71
method | result | size |
norman | \(\frac {2 x +3}{\left ({\mathrm e}^{x}-13+2 \ln \relax (3)\right ) x^{2}}\) | \(20\) |
risch | \(\frac {2 x +3}{\left ({\mathrm e}^{x}-13+2 \ln \relax (3)\right ) x^{2}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 25, normalized size = 0.89 \begin {gather*} \frac {2 \, x + 3}{x^{2} {\left (2 \, \log \relax (3) - 13\right )} + x^{2} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 27, normalized size = 0.96 \begin {gather*} \frac {2\,x+3}{x^2\,{\mathrm {e}}^x+2\,x^2\,\ln \relax (3)-13\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 24, normalized size = 0.86 \begin {gather*} \frac {2 x + 3}{x^{2} e^{x} - 13 x^{2} + 2 x^{2} \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________