Optimal. Leaf size=24 \[ \frac {1}{3} e^{\frac {11 e^{3-\frac {4}{3 x}}}{8+x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right ) \left (352+44 x-33 x^2\right )}{576 x^2+144 x^3+9 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right ) \left (352+44 x-33 x^2\right )}{x^2 \left (576+144 x+9 x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right ) \left (352+44 x-33 x^2\right )}{9 x^2 (8+x)^2} \, dx\\ &=\frac {1}{9} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right ) \left (352+44 x-33 x^2\right )}{x^2 (8+x)^2} \, dx\\ &=\frac {1}{9} \int \left (\frac {11 \exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{2 x^2}-\frac {11 \exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{16 x}-\frac {33 \exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{(8+x)^2}+\frac {11 \exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{16 (8+x)}\right ) \, dx\\ &=-\left (\frac {11}{144} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{x} \, dx\right )+\frac {11}{144} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{8+x} \, dx+\frac {11}{18} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{x^2} \, dx-\frac {11}{3} \int \frac {\exp \left (\frac {11 e^{\frac {-4+9 x}{3 x}}}{8+x}+\frac {-4+9 x}{3 x}\right )}{(8+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{3} e^{\frac {11 e^{3-\frac {4}{3 x}}}{8+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 49, normalized size = 2.04 \begin {gather*} \frac {1}{3} \, e^{\left (\frac {9 \, x^{2} + 33 \, x e^{\left (\frac {9 \, x - 4}{3 \, x}\right )} + 68 \, x - 32}{3 \, {\left (x^{2} + 8 \, x\right )}} - \frac {9 \, x - 4}{3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {11 \, {\left (3 \, x^{2} - 4 \, x - 32\right )} e^{\left (\frac {9 \, x - 4}{3 \, x} + \frac {11 \, e^{\left (\frac {9 \, x - 4}{3 \, x}\right )}}{x + 8}\right )}}{9 \, {\left (x^{4} + 16 \, x^{3} + 64 \, x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 22, normalized size = 0.92
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {11 \,{\mathrm e}^{\frac {9 x -4}{3 x}}}{x +8}}}{3}\) | \(22\) |
norman | \(\frac {\frac {8 x \,{\mathrm e}^{\frac {11 \,{\mathrm e}^{\frac {9 x -4}{3 x}}}{x +8}}}{3}+\frac {x^{2} {\mathrm e}^{\frac {11 \,{\mathrm e}^{\frac {9 x -4}{3 x}}}{x +8}}}{3}}{x \left (x +8\right )}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 18, normalized size = 0.75 \begin {gather*} \frac {1}{3} \, e^{\left (\frac {11 \, e^{\left (-\frac {4}{3 \, x} + 3\right )}}{x + 8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 18, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^{\frac {11\,{\mathrm {e}}^3\,{\mathrm {e}}^{-\frac {4}{3\,x}}}{x+8}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 17, normalized size = 0.71 \begin {gather*} \frac {e^{\frac {11 e^{\frac {3 x - \frac {4}{3}}{x}}}{x + 8}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________