Optimal. Leaf size=19 \[ \frac {2 x}{5 \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^x x+\left (16+8 e^x\right ) \log \left (18+9 e^x\right )+\left (4+2 e^x\right ) \log \left (18+9 e^x\right ) \log \left (\log \left (18+9 e^x\right )\right )}{\left (160+80 x+10 x^2+e^x \left (80+40 x+5 x^2\right )\right ) \log \left (18+9 e^x\right )+\left (80+20 x+e^x (40+10 x)\right ) \log \left (18+9 e^x\right ) \log \left (\log \left (18+9 e^x\right )\right )+\left (10+5 e^x\right ) \log \left (18+9 e^x\right ) \log ^2\left (\log \left (18+9 e^x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 e^x x+2 \left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )}{5 \left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-2 e^x x+2 \left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {4 x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2}+\frac {2 \left (-x+4 \log \left (9 \left (2+e^x\right )\right )+\log \left (9 \left (2+e^x\right )\right ) \log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2}\right ) \, dx\\ &=\frac {2}{5} \int \frac {-x+4 \log \left (9 \left (2+e^x\right )\right )+\log \left (9 \left (2+e^x\right )\right ) \log \left (\log \left (9 \left (2+e^x\right )\right )\right )}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx+\frac {4}{5} \int \frac {x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=\frac {2}{5} \int \left (-\frac {x \left (1+\log \left (9 \left (2+e^x\right )\right )\right )}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2}+\frac {1}{4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )}\right ) \, dx+\frac {4}{5} \int \frac {x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=-\left (\frac {2}{5} \int \frac {x \left (1+\log \left (9 \left (2+e^x\right )\right )\right )}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\right )+\frac {2}{5} \int \frac {1}{4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )} \, dx+\frac {4}{5} \int \frac {x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=\frac {2}{5} \int \frac {1}{4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )} \, dx-\frac {2}{5} \int \left (\frac {x}{\left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2}+\frac {x}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2}\right ) \, dx+\frac {4}{5} \int \frac {x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ &=-\left (\frac {2}{5} \int \frac {x}{\left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\right )-\frac {2}{5} \int \frac {x}{\log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx+\frac {2}{5} \int \frac {1}{4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )} \, dx+\frac {4}{5} \int \frac {x}{\left (2+e^x\right ) \log \left (9 \left (2+e^x\right )\right ) \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 x}{5 \left (4+x+\log \left (\log \left (9 \left (2+e^x\right )\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 16, normalized size = 0.84 \begin {gather*} \frac {2 \, x}{5 \, {\left (x + \log \left (\log \left (9 \, e^{x} + 18\right )\right ) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 16, normalized size = 0.84 \begin {gather*} \frac {2 \, x}{5 \, {\left (x + \log \left (\log \left (9 \, e^{x} + 18\right )\right ) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.89
method | result | size |
risch | \(\frac {2 x}{5 \left (\ln \left (\ln \left (9 \,{\mathrm e}^{x}+18\right )\right )+4+x \right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 \, x}{5 \, {\left (x + \log \left (2 \, \log \relax (3) + \log \left (e^{x} + 2\right )\right ) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.51, size = 20, normalized size = 1.05 \begin {gather*} \frac {2\,x}{5\,\left (x+\ln \left (\ln \left (9\,{\mathrm {e}}^x+18\right )\right )+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 x}{5 x + 5 \log {\left (\log {\left (9 e^{x} + 18 \right )} \right )} + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________