Optimal. Leaf size=23 \[ \frac {3 e^{\frac {1}{5} (-4-x)} x^3}{2 (-4+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 66, normalized size of antiderivative = 2.87, number of steps used = 14, number of rules used = 8, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {27, 12, 1594, 2199, 2194, 2177, 2178, 2176} \begin {gather*} \frac {3}{2} e^{\frac {1}{5} (-x-4)} x^2+6 e^{\frac {1}{5} (-x-4)} x+24 e^{\frac {1}{5} (-x-4)}-\frac {96 e^{\frac {1}{5} (-x-4)}}{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{5} (-4-x)} \left (-180 x^2+42 x^3-3 x^4\right )}{10 (-4+x)^2} \, dx\\ &=\frac {1}{10} \int \frac {e^{\frac {1}{5} (-4-x)} \left (-180 x^2+42 x^3-3 x^4\right )}{(-4+x)^2} \, dx\\ &=\frac {1}{10} \int \frac {e^{\frac {1}{5} (-4-x)} x^2 \left (-180+42 x-3 x^2\right )}{(-4+x)^2} \, dx\\ &=\frac {1}{10} \int \left (12 e^{\frac {1}{5} (-4-x)}-\frac {960 e^{\frac {1}{5} (-4-x)}}{(-4+x)^2}-\frac {192 e^{\frac {1}{5} (-4-x)}}{-4+x}+18 e^{\frac {1}{5} (-4-x)} x-3 e^{\frac {1}{5} (-4-x)} x^2\right ) \, dx\\ &=-\left (\frac {3}{10} \int e^{\frac {1}{5} (-4-x)} x^2 \, dx\right )+\frac {6}{5} \int e^{\frac {1}{5} (-4-x)} \, dx+\frac {9}{5} \int e^{\frac {1}{5} (-4-x)} x \, dx-\frac {96}{5} \int \frac {e^{\frac {1}{5} (-4-x)}}{-4+x} \, dx-96 \int \frac {e^{\frac {1}{5} (-4-x)}}{(-4+x)^2} \, dx\\ &=-6 e^{\frac {1}{5} (-4-x)}-\frac {96 e^{\frac {1}{5} (-4-x)}}{4-x}-9 e^{\frac {1}{5} (-4-x)} x+\frac {3}{2} e^{\frac {1}{5} (-4-x)} x^2-\frac {96 \text {Ei}\left (\frac {4-x}{5}\right )}{5 e^{8/5}}-3 \int e^{\frac {1}{5} (-4-x)} x \, dx+9 \int e^{\frac {1}{5} (-4-x)} \, dx+\frac {96}{5} \int \frac {e^{\frac {1}{5} (-4-x)}}{-4+x} \, dx\\ &=-51 e^{\frac {1}{5} (-4-x)}-\frac {96 e^{\frac {1}{5} (-4-x)}}{4-x}+6 e^{\frac {1}{5} (-4-x)} x+\frac {3}{2} e^{\frac {1}{5} (-4-x)} x^2-15 \int e^{\frac {1}{5} (-4-x)} \, dx\\ &=24 e^{\frac {1}{5} (-4-x)}-\frac {96 e^{\frac {1}{5} (-4-x)}}{4-x}+6 e^{\frac {1}{5} (-4-x)} x+\frac {3}{2} e^{\frac {1}{5} (-4-x)} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 23, normalized size = 1.00 \begin {gather*} \frac {3 e^{-\frac {4}{5}-\frac {x}{5}} x^3}{2 (-4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 16, normalized size = 0.70 \begin {gather*} \frac {3 \, x^{3} e^{\left (-\frac {1}{5} \, x - \frac {4}{5}\right )}}{2 \, {\left (x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 0.70 \begin {gather*} \frac {3 \, x^{3} e^{\left (-\frac {1}{5} \, x - \frac {4}{5}\right )}}{2 \, {\left (x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 17, normalized size = 0.74
method | result | size |
risch | \(\frac {3 x^{3} {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{2 \left (x -4\right )}\) | \(17\) |
gosper | \(\frac {3 x^{3} {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{2 \left (x -4\right )}\) | \(19\) |
norman | \(\frac {3 x^{3} {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{2 \left (x -4\right )}\) | \(19\) |
derivativedivides | \(\frac {96 \,{\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{x -4}+486 \,{\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}-45 \left (x +25\right ) {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}+\frac {3 \left (25 \left (\frac {4}{5}+\frac {x}{5}\right )^{2}+426+26 x \right ) {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{2}\) | \(56\) |
default | \(\frac {96 \,{\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{x -4}+486 \,{\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}-45 \left (x +25\right ) {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}+\frac {3 \left (25 \left (\frac {4}{5}+\frac {x}{5}\right )^{2}+426+26 x \right ) {\mathrm e}^{-\frac {4}{5}-\frac {x}{5}}}{2}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 22, normalized size = 0.96 \begin {gather*} \frac {3 \, x^{3} e^{\left (-\frac {1}{5} \, x + \frac {1}{5}\right )}}{2 \, {\left (x e - 4 \, e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.21, size = 18, normalized size = 0.78 \begin {gather*} \frac {3\,x^3\,{\mathrm {e}}^{-\frac {x}{5}-\frac {4}{5}}}{2\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.83 \begin {gather*} \frac {3 x^{3} e^{- \frac {x}{5} - \frac {4}{5}}}{2 x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________