Optimal. Leaf size=21 \[ \frac {5}{2} e^{-x} (-10-(x-\log (4)) \log (5)) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {12, 2187, 2176, 2194} \begin {gather*} -\frac {5}{2} e^{-x} (x \log (5)+10-(1+\log (4)) \log (5))-\frac {5}{2} e^{-x} \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2187
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-x} (50+(-5+5 x-5 \log (4)) \log (5)) \, dx\\ &=\frac {1}{2} \int e^{-x} (5 x \log (5)+5 (10-(1+\log (4)) \log (5))) \, dx\\ &=-\frac {5}{2} e^{-x} (10+x \log (5)-(1+\log (4)) \log (5))+\frac {1}{2} (5 \log (5)) \int e^{-x} \, dx\\ &=-\frac {5}{2} e^{-x} \log (5)-\frac {5}{2} e^{-x} (10+x \log (5)-(1+\log (4)) \log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 1.05 \begin {gather*} \frac {1}{2} e^{-x} (-50-5 x \log (5)+5 \log (4) \log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 17, normalized size = 0.81 \begin {gather*} -\frac {5}{2} \, {\left ({\left (x - 2 \, \log \relax (2)\right )} \log \relax (5) + 10\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.86 \begin {gather*} -\frac {5}{2} \, {\left (x \log \relax (5) - 2 \, \log \relax (5) \log \relax (2) + 10\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.90
method | result | size |
norman | \(\left (-\frac {5 x \ln \relax (5)}{2}-25+5 \ln \relax (2) \ln \relax (5)\right ) {\mathrm e}^{-x}\) | \(19\) |
gosper | \(\frac {5 \left (2 \ln \relax (2) \ln \relax (5)-x \ln \relax (5)-10\right ) {\mathrm e}^{-x}}{2}\) | \(20\) |
risch | \(\frac {\left (10 \ln \relax (2) \ln \relax (5)-5 x \ln \relax (5)-50\right ) {\mathrm e}^{-x}}{2}\) | \(20\) |
default | \(-25 \,{\mathrm e}^{-x}-\frac {5 \,{\mathrm e}^{-x} x \ln \relax (5)}{2}+5 \,{\mathrm e}^{-x} \ln \relax (2) \ln \relax (5)\) | \(27\) |
meijerg | \(25-25 \,{\mathrm e}^{-x}-5 \ln \relax (2) \ln \relax (5) \left (1-{\mathrm e}^{-x}\right )+\frac {5 \ln \relax (5) \left (1-\frac {\left (2 x +2\right ) {\mathrm e}^{-x}}{2}\right )}{2}-\frac {5 \ln \relax (5) \left (1-{\mathrm e}^{-x}\right )}{2}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 36, normalized size = 1.71 \begin {gather*} -\frac {5}{2} \, {\left (x + 1\right )} e^{\left (-x\right )} \log \relax (5) + 5 \, e^{\left (-x\right )} \log \relax (5) \log \relax (2) + \frac {5}{2} \, e^{\left (-x\right )} \log \relax (5) - 25 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 18, normalized size = 0.86 \begin {gather*} -\frac {5\,{\mathrm {e}}^{-x}\,\left (x\,\ln \relax (5)-2\,\ln \relax (2)\,\ln \relax (5)+10\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.95 \begin {gather*} \frac {\left (- 5 x \log {\relax (5 )} - 50 + 10 \log {\relax (2 )} \log {\relax (5 )}\right ) e^{- x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________