Optimal. Leaf size=23 \[ \frac {1}{5} \left (2+e^x\right ) x \log (5 x-\log (4 (-3+x))) \]
________________________________________________________________________________________
Rubi [F] time = 5.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32 x-10 x^2+e^x \left (16 x-5 x^2\right )+\left (30 x-10 x^2+e^x \left (15 x+10 x^2-5 x^3\right )+\left (-6+2 x+e^x \left (-3-2 x+x^2\right )\right ) \log (-12+4 x)\right ) \log (5 x-\log (-12+4 x))}{75 x-25 x^2+(-15+5 x) \log (-12+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x-10 x^2+e^x \left (16 x-5 x^2\right )+\left (30 x-10 x^2+e^x \left (15 x+10 x^2-5 x^3\right )+\left (-6+2 x+e^x \left (-3-2 x+x^2\right )\right ) \log (-12+4 x)\right ) \log (5 x-\log (-12+4 x))}{5 (3-x) (5 x-\log (4 (-3+x)))} \, dx\\ &=\frac {1}{5} \int \frac {32 x-10 x^2+e^x \left (16 x-5 x^2\right )+\left (30 x-10 x^2+e^x \left (15 x+10 x^2-5 x^3\right )+\left (-6+2 x+e^x \left (-3-2 x+x^2\right )\right ) \log (-12+4 x)\right ) \log (5 x-\log (-12+4 x))}{(3-x) (5 x-\log (4 (-3+x)))} \, dx\\ &=\frac {1}{5} \int \frac {32 x-10 x^2-e^x x (-16+5 x)-(-3+x) \left (2+e^x (1+x)\right ) (5 x-\log (4 (-3+x))) \log (5 x-\log (4 (-3+x)))}{(3-x) (5 x-\log (4 (-3+x)))} \, dx\\ &=\frac {1}{5} \int \left (\frac {2 \left (-16 x+5 x^2-15 x \log (5 x-\log (4 (-3+x)))+5 x^2 \log (5 x-\log (4 (-3+x)))+3 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))-x \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))\right )}{(-3+x) (5 x-\log (4 (-3+x)))}+\frac {e^x \left (-16 x+5 x^2-15 x \log (5 x-\log (4 (-3+x)))-10 x^2 \log (5 x-\log (4 (-3+x)))+5 x^3 \log (5 x-\log (4 (-3+x)))+3 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))+2 x \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))-x^2 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))\right )}{(-3+x) (5 x-\log (4 (-3+x)))}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (-16 x+5 x^2-15 x \log (5 x-\log (4 (-3+x)))-10 x^2 \log (5 x-\log (4 (-3+x)))+5 x^3 \log (5 x-\log (4 (-3+x)))+3 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))+2 x \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))-x^2 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))\right )}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx+\frac {2}{5} \int \frac {-16 x+5 x^2-15 x \log (5 x-\log (4 (-3+x)))+5 x^2 \log (5 x-\log (4 (-3+x)))+3 \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))-x \log (4 (-3+x)) \log (5 x-\log (4 (-3+x)))}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (-\frac {x (-16+5 x)}{5 x-\log (4 (-3+x))}-\left (-3-2 x+x^2\right ) \log (5 x-\log (4 (-3+x)))\right )}{3-x} \, dx+\frac {2}{5} \int \left (\frac {x (-16+5 x)}{(-3+x) (5 x-\log (4 (-3+x)))}+\log (5 x-\log (4 (-3+x)))\right ) \, dx\\ &=\frac {1}{5} \int \left (\frac {e^x x (-16+5 x)}{(-3+x) (5 x-\log (4 (-3+x)))}+e^x (1+x) \log (5 x-\log (4 (-3+x)))\right ) \, dx+\frac {2}{5} \int \frac {x (-16+5 x)}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx+\frac {2}{5} \int \log (5 x-\log (4 (-3+x))) \, dx\\ &=\frac {1}{5} \int \frac {e^x x (-16+5 x)}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx+\frac {1}{5} \int e^x (1+x) \log (5 x-\log (4 (-3+x))) \, dx+\frac {2}{5} \int \left (-\frac {3}{(-3+x) (5 x-\log (4 (-3+x)))}+\frac {5 x}{5 x-\log (4 (-3+x))}+\frac {1}{-5 x+\log (4 (-3+x))}\right ) \, dx+\frac {2}{5} \int \log (5 x-\log (4 (-3+x))) \, dx\\ &=\frac {1}{5} \int \left (-\frac {3 e^x}{(-3+x) (5 x-\log (4 (-3+x)))}+\frac {5 e^x x}{5 x-\log (4 (-3+x))}+\frac {e^x}{-5 x+\log (4 (-3+x))}\right ) \, dx+\frac {1}{5} \int \left (e^x \log (5 x-\log (4 (-3+x)))+e^x x \log (5 x-\log (4 (-3+x)))\right ) \, dx+\frac {2}{5} \int \frac {1}{-5 x+\log (4 (-3+x))} \, dx+\frac {2}{5} \int \log (5 x-\log (4 (-3+x))) \, dx-\frac {6}{5} \int \frac {1}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx+2 \int \frac {x}{5 x-\log (4 (-3+x))} \, dx\\ &=\frac {1}{5} \int \frac {e^x}{-5 x+\log (4 (-3+x))} \, dx+\frac {1}{5} \int e^x \log (5 x-\log (4 (-3+x))) \, dx+\frac {1}{5} \int e^x x \log (5 x-\log (4 (-3+x))) \, dx+\frac {2}{5} \int \frac {1}{-5 x+\log (4 (-3+x))} \, dx+\frac {2}{5} \int \log (5 x-\log (4 (-3+x))) \, dx-\frac {3}{5} \int \frac {e^x}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx-\frac {6}{5} \int \frac {1}{(-3+x) (5 x-\log (4 (-3+x)))} \, dx+2 \int \frac {x}{5 x-\log (4 (-3+x))} \, dx+\int \frac {e^x x}{5 x-\log (4 (-3+x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.69, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{5} \left (2+e^x\right ) x \log (5 x-\log (4 (-3+x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.26, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{5} \, {\left (x e^{x} + 2 \, x\right )} \log \left (5 \, x - \log \left (4 \, x - 12\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 35, normalized size = 1.52 \begin {gather*} \frac {1}{5} \, x e^{x} \log \left (5 \, x - \log \left (4 \, x - 12\right )\right ) + \frac {2}{5} \, x \log \left (5 \, x - \log \left (4 \, x - 12\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 24, normalized size = 1.04
method | result | size |
risch | \(\left (\frac {2 x}{5}+\frac {{\mathrm e}^{x} x}{5}\right ) \ln \left (-\ln \left (4 x -12\right )+5 x \right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 25, normalized size = 1.09 \begin {gather*} \frac {1}{5} \, {\left (x e^{x} + 2 \, x\right )} \log \left (5 \, x - 2 \, \log \relax (2) - \log \left (x - 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 20, normalized size = 0.87 \begin {gather*} \frac {x\,\ln \left (5\,x-\ln \left (4\,x-12\right )\right )\,\left ({\mathrm {e}}^x+2\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 22.83, size = 53, normalized size = 2.30 \begin {gather*} \frac {x e^{x} \log {\left (5 x - \log {\left (4 x - 12 \right )} \right )}}{5} + \left (\frac {2 x}{5} - \frac {3}{5}\right ) \log {\left (5 x - \log {\left (4 x - 12 \right )} \right )} + \frac {3 \log {\left (- 5 x + \log {\left (4 x - 12 \right )} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________