Optimal. Leaf size=28 \[ x^4 \left (-\frac {1}{5 x}-\log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.13, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 7, integrand size = 103, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6741, 12, 6688, 6742, 14, 2551, 43} \begin {gather*} x^4 \left (-\log \left (x (x+5)^2-2 e^x x\right )\right )-\frac {x^3}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2551
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-75 x^2-155 x^3-103 x^4-15 x^5-e^x \left (-6 x^2-10 x^3-10 x^4\right )-\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{5 \left (25-2 e^x+10 x+x^2\right )} \, dx\\ &=\frac {1}{5} \int \frac {-75 x^2-155 x^3-103 x^4-15 x^5-e^x \left (-6 x^2-10 x^3-10 x^4\right )-\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{25-2 e^x+10 x+x^2} \, dx\\ &=\frac {1}{5} \int \frac {x^2 \left (75+155 x+103 x^2+15 x^3-2 e^x \left (3+5 x+5 x^2\right )+20 x \left (-2 e^x+(5+x)^2\right ) \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right )}{2 e^x-(5+x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {5 x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2}-x^2 \left (3+5 x+5 x^2+20 x \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right )\right ) \, dx\\ &=-\left (\frac {1}{5} \int x^2 \left (3+5 x+5 x^2+20 x \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right ) \, dx\right )+\int \frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2} \, dx\\ &=-\left (\frac {1}{5} \int \left (x^2 \left (3+5 x+5 x^2\right )+20 x^3 \log \left (-2 e^x x+x (5+x)^2\right )\right ) \, dx\right )+\int \left (\frac {15 x^4}{25-2 e^x+10 x+x^2}+\frac {8 x^5}{25-2 e^x+10 x+x^2}+\frac {x^6}{25-2 e^x+10 x+x^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int x^2 \left (3+5 x+5 x^2\right ) \, dx\right )-4 \int x^3 \log \left (-2 e^x x+x (5+x)^2\right ) \, dx+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx\\ &=-x^4 \log \left (-2 e^x x+x (5+x)^2\right )-\frac {1}{5} \int \left (3 x^2+5 x^3+5 x^4\right ) \, dx+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^3 \left (-25-20 x-3 x^2+2 e^x (1+x)\right )}{2 e^x-(5+x)^2} \, dx\\ &=-\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \left (x^3 (1+x)-\frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2}\right ) \, dx\\ &=-\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int x^3 (1+x) \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx-\int \frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2} \, dx\\ &=-\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \left (x^3+x^4\right ) \, dx-\int \left (\frac {15 x^4}{25-2 e^x+10 x+x^2}+\frac {8 x^5}{25-2 e^x+10 x+x^2}+\frac {x^6}{25-2 e^x+10 x+x^2}\right ) \, dx\\ &=-\frac {x^3}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 30, normalized size = 1.07 \begin {gather*} \frac {1}{5} \left (-x^3-5 x^4 \log \left (-2 e^x x+x (5+x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 29, normalized size = 1.04 \begin {gather*} -x^{4} \log \left (x^{3} + 10 \, x^{2} - 2 \, x e^{x} + 25 \, x\right ) - \frac {1}{5} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 29, normalized size = 1.04 \begin {gather*} -x^{4} \log \left (x^{3} + 10 \, x^{2} - 2 \, x e^{x} + 25 \, x\right ) - \frac {1}{5} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 188, normalized size = 6.71
method | result | size |
risch | \(-x^{4} \ln \left (x^{2}-2 \,{\mathrm e}^{x}+10 x +25\right )-x^{4} \ln \relax (x )+\frac {i \pi \,x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right ) \mathrm {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )}{2}-\frac {i \pi \,x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )^{2}}{2}+\frac {i \pi \,x^{4} \mathrm {csgn}\left (i \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right ) \mathrm {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )^{2}}{2}-\frac {i \pi \,x^{4} \mathrm {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )^{3}}{2}-\frac {x^{3}}{5}\) | \(188\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 31, normalized size = 1.11 \begin {gather*} -x^{4} \log \left (x^{2} + 10 \, x - 2 \, e^{x} + 25\right ) - x^{4} \log \relax (x) - \frac {1}{5} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 29, normalized size = 1.04 \begin {gather*} -x^4\,\ln \left (25\,x-2\,x\,{\mathrm {e}}^x+10\,x^2+x^3\right )-\frac {x^3}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 29, normalized size = 1.04 \begin {gather*} - x^{4} \log {\left (x^{3} + 10 x^{2} - 2 x e^{x} + 25 x \right )} - \frac {x^{3}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________