Optimal. Leaf size=33 \[ x^2+3 \left (-x^2+e^5 \left (\frac {2}{x}+x-x \left (-5+2 x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 28, normalized size of antiderivative = 0.85, number of steps used = 2, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {14} \begin {gather*} -6 e^5 x^3-2 x^2+18 e^5 x+\frac {6 e^5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (18 e^5-\frac {6 e^5}{x^2}-4 x-18 e^5 x^2\right ) \, dx\\ &=\frac {6 e^5}{x}+18 e^5 x-2 x^2-6 e^5 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 0.85 \begin {gather*} \frac {6 e^5}{x}+18 e^5 x-2 x^2-6 e^5 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 23, normalized size = 0.70 \begin {gather*} -\frac {2 \, {\left (x^{3} + 3 \, {\left (x^{4} - 3 \, x^{2} - 1\right )} e^{5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 0.76 \begin {gather*} -6 \, x^{3} e^{5} - 2 \, x^{2} + 18 \, x e^{5} + \frac {6 \, e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.79
method | result | size |
default | \(-6 x^{3} {\mathrm e}^{5}-2 x^{2}+18 x \,{\mathrm e}^{5}+\frac {6 \,{\mathrm e}^{5}}{x}\) | \(26\) |
risch | \(-6 x^{3} {\mathrm e}^{5}-2 x^{2}+18 x \,{\mathrm e}^{5}+\frac {6 \,{\mathrm e}^{5}}{x}\) | \(26\) |
gosper | \(-\frac {2 \left (3 x^{4} {\mathrm e}^{5}+x^{3}-9 x^{2} {\mathrm e}^{5}-3 \,{\mathrm e}^{5}\right )}{x}\) | \(28\) |
norman | \(\frac {-2 x^{3}+18 x^{2} {\mathrm e}^{5}-6 x^{4} {\mathrm e}^{5}+6 \,{\mathrm e}^{5}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 0.76 \begin {gather*} -6 \, x^{3} e^{5} - 2 \, x^{2} + 18 \, x e^{5} + \frac {6 \, e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 25, normalized size = 0.76 \begin {gather*} 18\,x\,{\mathrm {e}}^5+\frac {6\,{\mathrm {e}}^5}{x}-6\,x^3\,{\mathrm {e}}^5-2\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 26, normalized size = 0.79 \begin {gather*} - 6 x^{3} e^{5} - 2 x^{2} + 18 x e^{5} + \frac {6 e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________