Optimal. Leaf size=33 \[ e^x-x+e^2 (2+x)^2+\frac {\log \left (\frac {4}{x}\right )}{2 x \log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 48, normalized size of antiderivative = 1.45, number of steps used = 9, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {12, 14, 2194, 2304} \begin {gather*} e^2 x^2-\left (1-4 e^2\right ) x+\frac {e^x \log (25)}{2 \log (5)}+\frac {\log \left (\frac {4}{x}\right )}{2 x \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-1+2 e^x x^2 \log (5)+\left (-2 x^2+e^2 \left (8 x^2+4 x^3\right )\right ) \log (5)-\log \left (\frac {4}{x}\right )}{x^2} \, dx}{2 \log (5)}\\ &=\frac {\int \left (e^x \log (25)+\frac {-1-2 \left (1-4 e^2\right ) x^2 \log (5)+4 e^2 x^3 \log (5)-\log \left (\frac {4}{x}\right )}{x^2}\right ) \, dx}{2 \log (5)}\\ &=\frac {\int \frac {-1-2 \left (1-4 e^2\right ) x^2 \log (5)+4 e^2 x^3 \log (5)-\log \left (\frac {4}{x}\right )}{x^2} \, dx}{2 \log (5)}+\frac {\log (25) \int e^x \, dx}{2 \log (5)}\\ &=\frac {e^x \log (25)}{2 \log (5)}+\frac {\int \left (\frac {-1-2 \left (1-4 e^2\right ) x^2 \log (5)+4 e^2 x^3 \log (5)}{x^2}-\frac {\log \left (\frac {4}{x}\right )}{x^2}\right ) \, dx}{2 \log (5)}\\ &=\frac {e^x \log (25)}{2 \log (5)}+\frac {\int \frac {-1-2 \left (1-4 e^2\right ) x^2 \log (5)+4 e^2 x^3 \log (5)}{x^2} \, dx}{2 \log (5)}-\frac {\int \frac {\log \left (\frac {4}{x}\right )}{x^2} \, dx}{2 \log (5)}\\ &=-\frac {1}{2 x \log (5)}+\frac {e^x \log (25)}{2 \log (5)}+\frac {\log \left (\frac {4}{x}\right )}{2 x \log (5)}+\frac {\int \left (-\frac {1}{x^2}+2 \left (-1+4 e^2\right ) \log (5)+4 e^2 x \log (5)\right ) \, dx}{2 \log (5)}\\ &=-\left (\left (1-4 e^2\right ) x\right )+e^2 x^2+\frac {e^x \log (25)}{2 \log (5)}+\frac {\log \left (\frac {4}{x}\right )}{2 x \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 45, normalized size = 1.36 \begin {gather*} \frac {-2 x \log (5)+8 e^2 x \log (5)+2 e^2 x^2 \log (5)+e^x \log (25)+\frac {\log \left (\frac {4}{x}\right )}{x}}{\log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 44, normalized size = 1.33 \begin {gather*} \frac {2 \, x e^{x} \log \relax (5) - 2 \, {\left (x^{2} - {\left (x^{3} + 4 \, x^{2}\right )} e^{2}\right )} \log \relax (5) + \log \left (\frac {4}{x}\right )}{2 \, x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 50, normalized size = 1.52 \begin {gather*} \frac {2 \, x^{3} e^{2} \log \relax (5) + 8 \, x^{2} e^{2} \log \relax (5) - 2 \, x^{2} \log \relax (5) + 2 \, x e^{x} \log \relax (5) + 2 \, \log \relax (2) - \log \relax (x)}{2 \, x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 42, normalized size = 1.27
method | result | size |
norman | \(\frac {x^{3} {\mathrm e}^{2}+\left (4 \,{\mathrm e}^{2}-1\right ) x^{2}+{\mathrm e}^{x} x +\frac {\ln \left (\frac {4}{x}\right )}{2 \ln \relax (5)}}{x}\) | \(42\) |
default | \(\frac {2 \ln \relax (5) {\mathrm e}^{2} x^{2}+8 x \,{\mathrm e}^{2} \ln \relax (5)-2 x \ln \relax (5)+\frac {\ln \left (\frac {4}{x}\right )}{x}+2 \,{\mathrm e}^{x} \ln \relax (5)}{2 \ln \relax (5)}\) | \(45\) |
risch | \(-\frac {\ln \relax (x )}{2 \ln \relax (5) x}+\frac {4 \ln \relax (5) {\mathrm e}^{2} x^{3}+16 \ln \relax (5) {\mathrm e}^{2} x^{2}-4 x^{2} \ln \relax (5)+4 x \,{\mathrm e}^{x} \ln \relax (5)+4 \ln \relax (2)}{4 \ln \relax (5) x}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 44, normalized size = 1.33 \begin {gather*} \frac {2 \, x^{2} e^{2} \log \relax (5) + 8 \, x e^{2} \log \relax (5) - 2 \, x \log \relax (5) + 2 \, e^{x} \log \relax (5) + \frac {\log \left (\frac {4}{x}\right )}{x}}{2 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.49, size = 40, normalized size = 1.21 \begin {gather*} x^2\,{\mathrm {e}}^2+x\,\left (4\,{\mathrm {e}}^2-1\right )+\frac {{\mathrm {e}}^x\,\ln \left (25\right )}{2\,\ln \relax (5)}+\frac {\ln \left (\frac {4}{x}\right )}{2\,x\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 29, normalized size = 0.88 \begin {gather*} x^{2} e^{2} + x \left (-1 + 4 e^{2}\right ) + e^{x} + \frac {\log {\left (\frac {4}{x} \right )}}{2 x \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________