Optimal. Leaf size=25 \[ x \left (-4+4 \left (1+x+\frac {x}{4+x-x^2}+\log (x)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.69, antiderivative size = 771, normalized size of antiderivative = 30.84, number of steps used = 85, number of rules used = 24, integrand size = 144, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6688, 12, 6742, 614, 618, 206, 638, 738, 728, 722, 818, 773, 632, 31, 800, 2357, 2295, 2304, 2314, 2316, 2315, 2317, 2391, 2296} \begin {gather*} \frac {654 x^4}{289}+\frac {4960 x^3}{289}+\frac {26 (41 x+260) x^2}{289 \left (-x^2+x+4\right )}+\frac {14 x^2}{289}+\frac {11898 (x+8) x}{289 \left (-x^2+x+4\right )}+\frac {1112 (x+8) x}{17 \left (-x^2+x+4\right )^2}+\frac {2224 (12-7 x)}{289 \left (-x^2+x+4\right )}-\frac {4992 (1-2 x)}{289 \left (-x^2+x+4\right )}-\frac {256 (1-2 x)}{17 \left (-x^2+x+4\right )^2}+\frac {1152 (x+8)}{17 \left (-x^2+x+4\right )^2}+8 x^2 \log (x)-\frac {6 (x+8) x^7}{17 \left (-x^2+x+4\right )^2}+\frac {6 (x+8) x^6}{17 \left (-x^2+x+4\right )^2}+\frac {24 (23 x+116) x^5}{289 \left (-x^2+x+4\right )}+\frac {90 (x+8) x^5}{17 \left (-x^2+x+4\right )^2}-\frac {18 (25 x+132) x^4}{289 \left (-x^2+x+4\right )}-\frac {26 (x+8) x^4}{17 \left (-x^2+x+4\right )^2}-\frac {180 (29 x+164) x^3}{289 \left (-x^2+x+4\right )}+\frac {210 (1-2 x) x^3}{17 \left (-x^2+x+4\right )^2}-\frac {522 (x+8) x^3}{17 \left (-x^2+x+4\right )^2}-\frac {27504 x}{289}+4 x \log ^2(x)+\frac {128 x \log (x)}{17 \left (1-\sqrt {17}\right ) \left (-2 x-\sqrt {17}+1\right )}+\frac {144 x \log (x)}{17 \left (-2 x-\sqrt {17}+1\right )}+\frac {128 x \log (x)}{17 \left (1+\sqrt {17}\right ) \left (-2 x+\sqrt {17}+1\right )}+\frac {144 x \log (x)}{17 \left (-2 x+\sqrt {17}+1\right )}+8 x \log (x)+\frac {64 \log \left (-2 x-\sqrt {17}+1\right )}{17 \left (1-\sqrt {17}\right )}+\frac {26 \left (4913-521 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+1\right )}{4913}-\frac {270 \left (4913-1801 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+1\right )}{4913}-\frac {36 \left (14739-2843 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+1\right )}{4913}+\frac {12 \left (142477-39429 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+1\right )}{4913}+\frac {72}{17} \log \left (-2 x-\sqrt {17}+1\right )+\frac {12 \left (142477+39429 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+1\right )}{4913}-\frac {36 \left (14739+2843 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+1\right )}{4913}-\frac {270 \left (4913+1801 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+1\right )}{4913}+\frac {26 \left (4913+521 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+1\right )}{4913}+\frac {64 \log \left (-2 x+\sqrt {17}+1\right )}{17 \left (1+\sqrt {17}\right )}+\frac {72}{17} \log \left (-2 x+\sqrt {17}+1\right )+\frac {201536 \tanh ^{-1}\left (\frac {1-2 x}{\sqrt {17}}\right )}{289 \sqrt {17}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 206
Rule 614
Rule 618
Rule 632
Rule 638
Rule 722
Rule 728
Rule 738
Rule 773
Rule 800
Rule 818
Rule 2295
Rule 2296
Rule 2304
Rule 2314
Rule 2315
Rule 2316
Rule 2317
Rule 2357
Rule 2391
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (128+576 x+556 x^2-105 x^3-261 x^4-13 x^5+45 x^6+3 x^7-3 x^8-\left (-256-512 x-72 x^2+250 x^3+58 x^4-48 x^5-8 x^6+4 x^7\right ) \log (x)-\left (-4-x+x^2\right )^3 \log ^2(x)\right )}{\left (4+x-x^2\right )^3} \, dx\\ &=4 \int \frac {128+576 x+556 x^2-105 x^3-261 x^4-13 x^5+45 x^6+3 x^7-3 x^8-\left (-256-512 x-72 x^2+250 x^3+58 x^4-48 x^5-8 x^6+4 x^7\right ) \log (x)-\left (-4-x+x^2\right )^3 \log ^2(x)}{\left (4+x-x^2\right )^3} \, dx\\ &=4 \int \left (-\frac {128}{\left (-4-x+x^2\right )^3}-\frac {576 x}{\left (-4-x+x^2\right )^3}-\frac {556 x^2}{\left (-4-x+x^2\right )^3}+\frac {105 x^3}{\left (-4-x+x^2\right )^3}+\frac {261 x^4}{\left (-4-x+x^2\right )^3}+\frac {13 x^5}{\left (-4-x+x^2\right )^3}-\frac {45 x^6}{\left (-4-x+x^2\right )^3}-\frac {3 x^7}{\left (-4-x+x^2\right )^3}+\frac {3 x^8}{\left (-4-x+x^2\right )^3}+\frac {2 \left (32+56 x+3 x^2-18 x^3-2 x^4+2 x^5\right ) \log (x)}{\left (-4-x+x^2\right )^2}+\log ^2(x)\right ) \, dx\\ &=4 \int \log ^2(x) \, dx+8 \int \frac {\left (32+56 x+3 x^2-18 x^3-2 x^4+2 x^5\right ) \log (x)}{\left (-4-x+x^2\right )^2} \, dx-12 \int \frac {x^7}{\left (-4-x+x^2\right )^3} \, dx+12 \int \frac {x^8}{\left (-4-x+x^2\right )^3} \, dx+52 \int \frac {x^5}{\left (-4-x+x^2\right )^3} \, dx-180 \int \frac {x^6}{\left (-4-x+x^2\right )^3} \, dx+420 \int \frac {x^3}{\left (-4-x+x^2\right )^3} \, dx-512 \int \frac {1}{\left (-4-x+x^2\right )^3} \, dx+1044 \int \frac {x^4}{\left (-4-x+x^2\right )^3} \, dx-2224 \int \frac {x^2}{\left (-4-x+x^2\right )^3} \, dx-2304 \int \frac {x}{\left (-4-x+x^2\right )^3} \, dx\\ &=-\frac {256 (1-2 x)}{17 \left (4+x-x^2\right )^2}+\frac {210 (1-2 x) x^3}{17 \left (4+x-x^2\right )^2}+\frac {1152 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {1112 x (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {522 x^3 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {26 x^4 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {90 x^5 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {6 x^6 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {6 x^7 (8+x)}{17 \left (4+x-x^2\right )^2}+4 x \log ^2(x)+\frac {6}{17} \int \frac {(-48-3 x) x^5}{\left (-4-x+x^2\right )^2} \, dx-\frac {6}{17} \int \frac {(-56-4 x) x^6}{\left (-4-x+x^2\right )^2} \, dx-\frac {26}{17} \int \frac {(-32-x) x^3}{\left (-4-x+x^2\right )^2} \, dx+\frac {90}{17} \int \frac {(-40-2 x) x^4}{\left (-4-x+x^2\right )^2} \, dx-8 \int \log (x) \, dx+8 \int \left (2 \log (x)+2 x \log (x)+\frac {(4+9 x) \log (x)}{\left (-4-x+x^2\right )^2}+\frac {\log (x)}{-4-x+x^2}\right ) \, dx-\frac {630}{17} \int \frac {x^2}{\left (-4-x+x^2\right )^2} \, dx+\frac {1112}{17} \int \frac {-8+2 x}{\left (-4-x+x^2\right )^2} \, dx+\frac {1536}{17} \int \frac {1}{\left (-4-x+x^2\right )^2} \, dx+\frac {3456}{17} \int \frac {1}{\left (-4-x+x^2\right )^2} \, dx+\frac {12528}{17} \int \frac {x^2}{\left (-4-x+x^2\right )^2} \, dx\\ &=8 x-\frac {256 (1-2 x)}{17 \left (4+x-x^2\right )^2}+\frac {210 (1-2 x) x^3}{17 \left (4+x-x^2\right )^2}+\frac {1152 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {1112 x (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {522 x^3 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {26 x^4 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {90 x^5 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {6 x^6 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {6 x^7 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {2224 (12-7 x)}{289 \left (4+x-x^2\right )}-\frac {4992 (1-2 x)}{289 \left (4+x-x^2\right )}+\frac {11898 x (8+x)}{289 \left (4+x-x^2\right )}+\frac {24 x^5 (116+23 x)}{289 \left (4+x-x^2\right )}-\frac {18 x^4 (132+25 x)}{289 \left (4+x-x^2\right )}-\frac {180 x^3 (164+29 x)}{289 \left (4+x-x^2\right )}+\frac {26 x^2 (260+41 x)}{289 \left (4+x-x^2\right )}-8 x \log (x)+4 x \log ^2(x)+\frac {6}{289} \int \frac {(-1584-276 x) x^3}{-4-x+x^2} \, dx-\frac {6}{289} \int \frac {(-2320-436 x) x^4}{-4-x+x^2} \, dx-\frac {26}{289} \int \frac {(-520-58 x) x}{-4-x+x^2} \, dx+\frac {90}{289} \int \frac {(-984-150 x) x^2}{-4-x+x^2} \, dx+8 \int \frac {(4+9 x) \log (x)}{\left (-4-x+x^2\right )^2} \, dx+8 \int \frac {\log (x)}{-4-x+x^2} \, dx-\frac {3072}{289} \int \frac {1}{-4-x+x^2} \, dx+16 \int \log (x) \, dx+16 \int x \log (x) \, dx-\frac {5040}{289} \int \frac {1}{-4-x+x^2} \, dx-\frac {6912}{289} \int \frac {1}{-4-x+x^2} \, dx+\frac {15568}{289} \int \frac {1}{-4-x+x^2} \, dx+\frac {100224}{289} \int \frac {1}{-4-x+x^2} \, dx\\ &=-\frac {804 x}{289}-4 x^2-\frac {256 (1-2 x)}{17 \left (4+x-x^2\right )^2}+\frac {210 (1-2 x) x^3}{17 \left (4+x-x^2\right )^2}+\frac {1152 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {1112 x (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {522 x^3 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {26 x^4 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {90 x^5 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {6 x^6 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {6 x^7 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {2224 (12-7 x)}{289 \left (4+x-x^2\right )}-\frac {4992 (1-2 x)}{289 \left (4+x-x^2\right )}+\frac {11898 x (8+x)}{289 \left (4+x-x^2\right )}+\frac {24 x^5 (116+23 x)}{289 \left (4+x-x^2\right )}-\frac {18 x^4 (132+25 x)}{289 \left (4+x-x^2\right )}-\frac {180 x^3 (164+29 x)}{289 \left (4+x-x^2\right )}+\frac {26 x^2 (260+41 x)}{289 \left (4+x-x^2\right )}+8 x \log (x)+8 x^2 \log (x)+4 x \log ^2(x)+\frac {6}{289} \int \left (-2964-1860 x-276 x^2-\frac {12 (988+867 x)}{-4-x+x^2}\right ) \, dx-\frac {6}{289} \int \left (-15524-4500 x-2756 x^2-436 x^3-\frac {4 (15524+8381 x)}{-4-x+x^2}\right ) \, dx-\frac {26}{289} \int \frac {-232-578 x}{-4-x+x^2} \, dx+\frac {90}{289} \int \left (-1134-150 x-\frac {6 (756+289 x)}{-4-x+x^2}\right ) \, dx+8 \int \left (-\frac {2 \log (x)}{\sqrt {17} \left (1+\sqrt {17}-2 x\right )}-\frac {2 \log (x)}{\sqrt {17} \left (-1+\sqrt {17}+2 x\right )}\right ) \, dx+8 \int \left (\frac {4 \log (x)}{\left (-4-x+x^2\right )^2}+\frac {9 x \log (x)}{\left (-4-x+x^2\right )^2}\right ) \, dx+\frac {6144}{289} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-1+2 x\right )+\frac {10080}{289} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-1+2 x\right )+\frac {13824}{289} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-1+2 x\right )-\frac {31136}{289} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-1+2 x\right )-\frac {200448}{289} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-1+2 x\right )\\ &=-\frac {27504 x}{289}+\frac {14 x^2}{289}+\frac {4960 x^3}{289}+\frac {654 x^4}{289}-\frac {256 (1-2 x)}{17 \left (4+x-x^2\right )^2}+\frac {210 (1-2 x) x^3}{17 \left (4+x-x^2\right )^2}+\frac {1152 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {1112 x (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {522 x^3 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {26 x^4 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {90 x^5 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {6 x^6 (8+x)}{17 \left (4+x-x^2\right )^2}-\frac {6 x^7 (8+x)}{17 \left (4+x-x^2\right )^2}+\frac {2224 (12-7 x)}{289 \left (4+x-x^2\right )}-\frac {4992 (1-2 x)}{289 \left (4+x-x^2\right )}+\frac {11898 x (8+x)}{289 \left (4+x-x^2\right )}+\frac {24 x^5 (116+23 x)}{289 \left (4+x-x^2\right )}-\frac {18 x^4 (132+25 x)}{289 \left (4+x-x^2\right )}-\frac {180 x^3 (164+29 x)}{289 \left (4+x-x^2\right )}+\frac {26 x^2 (260+41 x)}{289 \left (4+x-x^2\right )}+\frac {201536 \tanh ^{-1}\left (\frac {1-2 x}{\sqrt {17}}\right )}{289 \sqrt {17}}+8 x \log (x)+8 x^2 \log (x)+4 x \log ^2(x)+\frac {24}{289} \int \frac {15524+8381 x}{-4-x+x^2} \, dx-\frac {72}{289} \int \frac {988+867 x}{-4-x+x^2} \, dx-\frac {540}{289} \int \frac {756+289 x}{-4-x+x^2} \, dx+32 \int \frac {\log (x)}{\left (-4-x+x^2\right )^2} \, dx+72 \int \frac {x \log (x)}{\left (-4-x+x^2\right )^2} \, dx-\frac {16 \int \frac {\log (x)}{1+\sqrt {17}-2 x} \, dx}{\sqrt {17}}-\frac {16 \int \frac {\log (x)}{-1+\sqrt {17}+2 x} \, dx}{\sqrt {17}}+\frac {\left (26 \left (4913-521 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {1}{2}+\frac {\sqrt {17}}{2}+x} \, dx}{4913}+\frac {\left (26 \left (4913+521 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {1}{2}-\frac {\sqrt {17}}{2}+x} \, dx}{4913}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 83, normalized size = 3.32 \begin {gather*} 4 \left (-2 x+2 x^2+x^3+\frac {4+5 x}{\left (-4-x+x^2\right )^2}+\frac {-15-11 x}{-4-x+x^2}-2 \log (x)+\frac {2 \left (-4-5 x-5 x^2+x^4\right ) \log (x)}{-4-x+x^2}+x \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.14, size = 108, normalized size = 4.32 \begin {gather*} \frac {4 \, {\left (x^{7} - 13 \, x^{5} - 2 \, x^{4} + 35 \, x^{3} + {\left (x^{5} - 2 \, x^{4} - 7 \, x^{3} + 8 \, x^{2} + 16 \, x\right )} \log \relax (x)^{2} + 12 \, x^{2} + 2 \, {\left (x^{6} - x^{5} - 10 \, x^{4} + 2 \, x^{3} + 28 \, x^{2} + 16 \, x\right )} \log \relax (x) + 32 \, x + 64\right )}}{x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 86, normalized size = 3.44 \begin {gather*} 4 \, x^{3} + 4 \, x \log \relax (x)^{2} + 8 \, x^{2} + 8 \, {\left (x^{2} + x - \frac {x + 4}{x^{2} - x - 4}\right )} \log \relax (x) - 8 \, x - \frac {4 \, {\left (11 \, x^{3} + 4 \, x^{2} - 64 \, x - 64\right )}}{x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16} - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 108, normalized size = 4.32
method | result | size |
risch | \(4 x \ln \relax (x )^{2}+\frac {8 \left (x^{4}-5 x^{2}-5 x -4\right ) \ln \relax (x )}{x^{2}-x -4}-\frac {4 \left (-x^{7}+2 x^{4} \ln \relax (x )+13 x^{5}-4 x^{3} \ln \relax (x )+2 x^{4}-14 x^{2} \ln \relax (x )-35 x^{3}+16 x \ln \relax (x )-12 x^{2}+32 \ln \relax (x )-32 x -64\right )}{\left (x^{2}-x -4\right )^{2}}\) | \(108\) |
default | \(4 x \ln \relax (x )^{2}+8 x \ln \relax (x )-8 x +4 x^{3}+8 x^{2}-\frac {4 \left (11 x^{3}+4 x^{2}-64 x -64\right )}{\left (x^{2}-x -4\right )^{2}}+8 x^{2} \ln \relax (x )-\frac {8 \ln \relax (x ) \left (\sqrt {17}\, \ln \left (\frac {1+\sqrt {17}-2 x}{1+\sqrt {17}}\right ) x^{2}-\sqrt {17}\, \ln \left (\frac {-1+\sqrt {17}+2 x}{-1+\sqrt {17}}\right ) x^{2}-\sqrt {17}\, \ln \left (\frac {1+\sqrt {17}-2 x}{1+\sqrt {17}}\right ) x +\sqrt {17}\, \ln \left (\frac {-1+\sqrt {17}+2 x}{-1+\sqrt {17}}\right ) x -4 \sqrt {17}\, \ln \left (\frac {1+\sqrt {17}-2 x}{1+\sqrt {17}}\right )+4 \sqrt {17}\, \ln \left (\frac {-1+\sqrt {17}+2 x}{-1+\sqrt {17}}\right )+17 x^{2}\right )}{17 \left (x^{2}-x -4\right )}+\frac {8 \sqrt {17}\, \ln \relax (x ) \ln \left (\frac {1+\sqrt {17}-2 x}{1+\sqrt {17}}\right )}{17}-\frac {8 \sqrt {17}\, \ln \relax (x ) \ln \left (\frac {-1+\sqrt {17}+2 x}{-1+\sqrt {17}}\right )}{17}\) | \(267\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 405, normalized size = 16.20 \begin {gather*} 4 \, x^{3} + 12 \, x^{2} - \frac {6 \, {\left (37898 \, x^{3} + 23495 \, x^{2} - 180872 \, x - 197904\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} + \frac {6 \, {\left (11264 \, x^{3} + 12293 \, x^{2} - 56696 \, x - 74032\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} + \frac {90 \, {\left (4134 \, x^{3} + 1891 \, x^{2} - 17512 \, x - 17232\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {26 \, {\left (924 \, x^{3} + 1793 \, x^{2} - 4696 \, x - 7536\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {522 \, {\left (386 \, x^{3} - x^{2} - 1096 \, x - 656\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {210 \, {\left (24 \, x^{3} + 253 \, x^{2} - 152 \, x - 496\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} + \frac {1112 \, {\left (14 \, x^{3} - 21 \, x^{2} + 104 \, x + 96\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {256 \, {\left (12 \, x^{3} - 18 \, x^{2} - 76 \, x + 41\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {1152 \, {\left (6 \, x^{3} - 9 \, x^{2} - 38 \, x - 124\right )}}{289 \, {\left (x^{4} - 2 \, x^{3} - 7 \, x^{2} + 8 \, x + 16\right )}} - \frac {4 \, {\left (x^{4} + x^{3} - {\left (x^{3} - x^{2} - 4 \, x\right )} \log \relax (x)^{2} - 6 \, x^{2} - 2 \, {\left (x^{4} - 6 \, x^{2} - 4 \, x\right )} \log \relax (x) - 8 \, x\right )}}{x^{2} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.55, size = 89, normalized size = 3.56 \begin {gather*} 4\,x\,{\ln \relax (x)}^2-8\,\ln \relax (x)-8\,x+8\,x^2+4\,x^3+\frac {-44\,x^3-16\,x^2+256\,x+256}{x^4-2\,x^3-7\,x^2+8\,x+16}+\frac {\ln \relax (x)\,\left (-8\,x^4+40\,x^2+40\,x+32\right )}{-x^2+x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 85, normalized size = 3.40 \begin {gather*} 4 x^{3} + 8 x^{2} + 4 x \log {\relax (x )}^{2} - 8 x + \frac {- 44 x^{3} - 16 x^{2} + 256 x + 256}{x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 16} - 8 \log {\relax (x )} + \frac {\left (8 x^{4} - 40 x^{2} - 40 x - 32\right ) \log {\relax (x )}}{x^{2} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________