Optimal. Leaf size=23 \[ e^{\frac {1}{4} x \left (10-7 \left (-1+e^x\right )+2 x\right )}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{4} \left (2 x^2-7 e^x x+17 x\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (-4+e^{\frac {1}{4} \left (17 x-7 e^x x+2 x^2\right )} \left (17+e^x (-7-7 x)+4 x\right )\right ) \, dx\\ &=-x+\frac {1}{4} \int e^{\frac {1}{4} \left (17 x-7 e^x x+2 x^2\right )} \left (17+e^x (-7-7 x)+4 x\right ) \, dx\\ &=e^{\frac {1}{4} \left (17 x-7 e^x x+2 x^2\right )}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 27, normalized size = 1.17 \begin {gather*} e^{\frac {17 x}{4}-\frac {7 e^x x}{4}+\frac {x^2}{2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 19, normalized size = 0.83 \begin {gather*} -x + e^{\left (\frac {1}{2} \, x^{2} - \frac {7}{4} \, x e^{x} + \frac {17}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 19, normalized size = 0.83 \begin {gather*} -x + e^{\left (\frac {1}{2} \, x^{2} - \frac {7}{4} \, x e^{x} + \frac {17}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.78
method | result | size |
risch | \(-x +{\mathrm e}^{-\frac {x \left (7 \,{\mathrm e}^{x}-2 x -17\right )}{4}}\) | \(18\) |
default | \(-x +{\mathrm e}^{-\frac {7 \,{\mathrm e}^{x} x}{4}+\frac {x^{2}}{2}+\frac {17 x}{4}}\) | \(20\) |
norman | \(-x +{\mathrm e}^{-\frac {7 \,{\mathrm e}^{x} x}{4}+\frac {x^{2}}{2}+\frac {17 x}{4}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x - \frac {1}{4} \, \int {\left (7 \, {\left (x + 1\right )} e^{\left (\frac {21}{4} \, x\right )} - {\left (4 \, x + 17\right )} e^{\left (\frac {17}{4} \, x\right )}\right )} e^{\left (\frac {1}{2} \, x^{2} - \frac {7}{4} \, x e^{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 19, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{\frac {17\,x}{4}-\frac {7\,x\,{\mathrm {e}}^x}{4}+\frac {x^2}{2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 20, normalized size = 0.87 \begin {gather*} - x + e^{\frac {x^{2}}{2} - \frac {7 x e^{x}}{4} + \frac {17 x}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________