Optimal. Leaf size=23 \[ 4-\frac {4 \left (-3+e^{e^2}\right ) \left (-2-e^{4 x}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 34, normalized size of antiderivative = 1.48, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {14, 2197} \begin {gather*} -\frac {4 \left (3-e^{e^2}\right ) e^{4 x}}{x^2}-\frac {8 \left (3-e^{e^2}\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {16 \left (-3+e^{e^2}\right )}{x^3}+\frac {8 e^{4 x} \left (-3+e^{e^2}\right ) (-1+2 x)}{x^3}\right ) \, dx\\ &=-\frac {8 \left (3-e^{e^2}\right )}{x^2}-\left (8 \left (3-e^{e^2}\right )\right ) \int \frac {e^{4 x} (-1+2 x)}{x^3} \, dx\\ &=-\frac {8 \left (3-e^{e^2}\right )}{x^2}-\frac {4 e^{4 x} \left (3-e^{e^2}\right )}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.09 \begin {gather*} 8 \left (-3+e^{e^2}\right ) \left (\frac {1}{x^2}+\frac {e^{4 x}}{2 x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 23, normalized size = 1.00 \begin {gather*} \frac {4 \, {\left ({\left (e^{\left (4 \, x\right )} + 2\right )} e^{\left (e^{2}\right )} - 3 \, e^{\left (4 \, x\right )} - 6\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 1.17 \begin {gather*} -\frac {4 \, {\left (3 \, e^{\left (4 \, x\right )} - e^{\left (4 \, x + e^{2}\right )} - 2 \, e^{\left (e^{2}\right )} + 6\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.04
method | result | size |
norman | \(\frac {\left (4 \,{\mathrm e}^{{\mathrm e}^{2}}-12\right ) {\mathrm e}^{4 x}+8 \,{\mathrm e}^{{\mathrm e}^{2}}-24}{x^{2}}\) | \(24\) |
risch | \(\frac {8 \,{\mathrm e}^{{\mathrm e}^{2}}}{x^{2}}-\frac {24}{x^{2}}+\frac {4 \left ({\mathrm e}^{{\mathrm e}^{2}}-3\right ) {\mathrm e}^{4 x}}{x^{2}}\) | \(29\) |
default | \(-\frac {24}{x^{2}}-\frac {12 \,{\mathrm e}^{4 x}}{x^{2}}+\frac {8 \,{\mathrm e}^{{\mathrm e}^{2}}}{x^{2}}-8 \,{\mathrm e}^{{\mathrm e}^{2}} \left (-\frac {{\mathrm e}^{4 x}}{2 x^{2}}-\frac {2 \,{\mathrm e}^{4 x}}{x}-8 \expIntegralEi \left (1, -4 x \right )\right )+16 \,{\mathrm e}^{{\mathrm e}^{2}} \left (-\frac {{\mathrm e}^{4 x}}{x}-4 \expIntegralEi \left (1, -4 x \right )\right )\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 48, normalized size = 2.09 \begin {gather*} 64 \, e^{\left (e^{2}\right )} \Gamma \left (-1, -4 \, x\right ) + 128 \, e^{\left (e^{2}\right )} \Gamma \left (-2, -4 \, x\right ) + \frac {8 \, e^{\left (e^{2}\right )}}{x^{2}} - \frac {24}{x^{2}} - 192 \, \Gamma \left (-1, -4 \, x\right ) - 384 \, \Gamma \left (-2, -4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 16, normalized size = 0.70 \begin {gather*} \frac {4\,\left ({\mathrm {e}}^{{\mathrm {e}}^2}-3\right )\,\left ({\mathrm {e}}^{4\,x}+2\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.26 \begin {gather*} \frac {\left (-12 + 4 e^{e^{2}}\right ) e^{4 x}}{x^{2}} - \frac {48 - 16 e^{e^{2}}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________