Optimal. Leaf size=26 \[ \log \left (\frac {1}{9} x^{-2+\frac {2 e^x x}{\frac {3}{x^3}-x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.64, antiderivative size = 35, normalized size of antiderivative = 1.35, number of steps used = 5, number of rules used = 4, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1594, 28, 6742, 2288} \begin {gather*} \frac {2 e^x x^3 \left (3 x \log (x)-x^5 \log (x)\right )}{\left (3-x^4\right )^2}-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 1594
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-18+12 x^4-2 x^8+e^x \left (6 x^4-2 x^8\right )+e^x \left (24 x^4+6 x^5-2 x^9\right ) \log (x)}{x \left (9-6 x^4+x^8\right )} \, dx\\ &=\int \frac {-18+12 x^4-2 x^8+e^x \left (6 x^4-2 x^8\right )+e^x \left (24 x^4+6 x^5-2 x^9\right ) \log (x)}{x \left (-3+x^4\right )^2} \, dx\\ &=\int \left (-\frac {2}{x}-\frac {2 e^x x^3 \left (-3+x^4-12 \log (x)-3 x \log (x)+x^5 \log (x)\right )}{\left (-3+x^4\right )^2}\right ) \, dx\\ &=-2 \log (x)-2 \int \frac {e^x x^3 \left (-3+x^4-12 \log (x)-3 x \log (x)+x^5 \log (x)\right )}{\left (-3+x^4\right )^2} \, dx\\ &=-2 \log (x)+\frac {2 e^x x^3 \left (3 x \log (x)-x^5 \log (x)\right )}{\left (3-x^4\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 22, normalized size = 0.85 \begin {gather*} -\frac {2 \left (-3+\left (1+e^x\right ) x^4\right ) \log (x)}{-3+x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 22, normalized size = 0.85 \begin {gather*} -\frac {2 \, {\left (x^{4} e^{x} + x^{4} - 3\right )} \log \relax (x)}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 28, normalized size = 1.08 \begin {gather*} -\frac {2 \, {\left (x^{4} e^{x} \log \relax (x) + x^{4} \log \relax (x) - 3 \, \log \relax (x)\right )}}{x^{4} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.85
method | result | size |
risch | \(-\frac {2 x^{4} {\mathrm e}^{x} \ln \relax (x )}{x^{4}-3}-2 \ln \relax (x )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 0.81 \begin {gather*} -\frac {2 \, x^{4} e^{x} \log \relax (x)}{x^{4} - 3} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 22, normalized size = 0.85 \begin {gather*} -\frac {2\,\ln \relax (x)\,\left (x^4\,{\mathrm {e}}^x+x^4-3\right )}{x^4-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.85 \begin {gather*} - \frac {2 x^{4} e^{x} \log {\relax (x )}}{x^{4} - 3} - 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________