Optimal. Leaf size=15 \[ \frac {x}{\log \left (4-x+16 x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x-32 x^2+\left (4-x+16 x^2\right ) \log \left (4-x+16 x^2\right )}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(1-32 x) x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )}+\frac {1}{\log \left (4-x+16 x^2\right )}\right ) \, dx\\ &=\int \frac {(1-32 x) x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )} \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=\int \left (-\frac {2}{\log ^2\left (4-x+16 x^2\right )}+\frac {8-x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )}\right ) \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (4-x+16 x^2\right )} \, dx\right )+\int \frac {8-x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )} \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (4-x+16 x^2\right )} \, dx\right )+\int \left (\frac {8}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )}-\frac {x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )}\right ) \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (4-x+16 x^2\right )} \, dx\right )+8 \int \frac {1}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )} \, dx-\int \frac {x}{\left (4-x+16 x^2\right ) \log ^2\left (4-x+16 x^2\right )} \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (4-x+16 x^2\right )} \, dx\right )+8 \int \left (\frac {32 i}{\sqrt {255} \left (1+i \sqrt {255}-32 x\right ) \log ^2\left (4-x+16 x^2\right )}+\frac {32 i}{\sqrt {255} \left (-1+i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )}\right ) \, dx-\int \left (\frac {1-\frac {i}{\sqrt {255}}}{\left (-1-i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )}+\frac {1+\frac {i}{\sqrt {255}}}{\left (-1+i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )}\right ) \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (4-x+16 x^2\right )} \, dx\right )+\frac {(256 i) \int \frac {1}{\left (1+i \sqrt {255}-32 x\right ) \log ^2\left (4-x+16 x^2\right )} \, dx}{\sqrt {255}}+\frac {(256 i) \int \frac {1}{\left (-1+i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )} \, dx}{\sqrt {255}}-\frac {1}{255} \left (255-i \sqrt {255}\right ) \int \frac {1}{\left (-1-i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )} \, dx-\frac {1}{255} \left (255+i \sqrt {255}\right ) \int \frac {1}{\left (-1+i \sqrt {255}+32 x\right ) \log ^2\left (4-x+16 x^2\right )} \, dx+\int \frac {1}{\log \left (4-x+16 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 15, normalized size = 1.00 \begin {gather*} \frac {x}{\log \left (4-x+16 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 15, normalized size = 1.00 \begin {gather*} \frac {x}{\log \left (16 \, x^{2} - x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 15, normalized size = 1.00 \begin {gather*} \frac {x}{\log \left (16 \, x^{2} - x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 16, normalized size = 1.07
method | result | size |
norman | \(\frac {x}{\ln \left (16 x^{2}-x +4\right )}\) | \(16\) |
risch | \(\frac {x}{\ln \left (16 x^{2}-x +4\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 15, normalized size = 1.00 \begin {gather*} \frac {x}{\log \left (16 \, x^{2} - x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 15, normalized size = 1.00 \begin {gather*} \frac {x}{\ln \left (16\,x^2-x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.67 \begin {gather*} \frac {x}{\log {\left (16 x^{2} - x + 4 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________