Optimal. Leaf size=30 \[ -4-4 x-x^2-\log (3)+\frac {1}{25} \left (1+\frac {2}{x+\log (x)}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 28, normalized size of antiderivative = 0.93, number of steps used = 6, number of rules used = 4, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {6688, 12, 6742, 6686} \begin {gather*} -(x+2)^2+\frac {4}{25 (x+\log (x))}+\frac {4}{25 (x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-4-6 x-2 x^2-50 x^4-25 x^5-\left (2+2 x+150 x^3+75 x^4\right ) \log (x)-75 x^2 (2+x) \log ^2(x)-25 x (2+x) \log ^3(x)\right )}{25 x (x+\log (x))^3} \, dx\\ &=\frac {2}{25} \int \frac {-4-6 x-2 x^2-50 x^4-25 x^5-\left (2+2 x+150 x^3+75 x^4\right ) \log (x)-75 x^2 (2+x) \log ^2(x)-25 x (2+x) \log ^3(x)}{x (x+\log (x))^3} \, dx\\ &=\frac {2}{25} \int \left (-25 (2+x)-\frac {4 (1+x)}{x (x+\log (x))^3}-\frac {2 (1+x)}{x (x+\log (x))^2}\right ) \, dx\\ &=-(2+x)^2-\frac {4}{25} \int \frac {1+x}{x (x+\log (x))^2} \, dx-\frac {8}{25} \int \frac {1+x}{x (x+\log (x))^3} \, dx\\ &=-(2+x)^2+\frac {4}{25 (x+\log (x))^2}+\frac {4}{25 (x+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 28, normalized size = 0.93 \begin {gather*} -\frac {2}{25} \left (50 x+\frac {25 x^2}{2}-\frac {2 (1+x+\log (x))}{(x+\log (x))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 61, normalized size = 2.03 \begin {gather*} -\frac {25 \, x^{4} + 100 \, x^{3} + 25 \, {\left (x^{2} + 4 \, x\right )} \log \relax (x)^{2} + 2 \, {\left (25 \, x^{3} + 100 \, x^{2} - 2\right )} \log \relax (x) - 4 \, x - 4}{25 \, {\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 31, normalized size = 1.03 \begin {gather*} -x^{2} - 4 \, x + \frac {4 \, {\left (x + \log \relax (x) + 1\right )}}{25 \, {\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.77
method | result | size |
risch | \(-x^{2}-4 x +\frac {\frac {4}{25}+\frac {4 x}{25}+\frac {4 \ln \relax (x )}{25}}{\left (x +\ln \relax (x )\right )^{2}}\) | \(23\) |
norman | \(\frac {\frac {4}{25}+2 \ln \relax (x )^{3}-6 x^{2} \ln \relax (x )+\frac {4 x}{25}-4 x^{3}-x^{4}-x^{2} \ln \relax (x )^{2}-2 x^{3} \ln \relax (x )+\frac {4 \ln \relax (x )}{25}}{\left (x +\ln \relax (x )\right )^{2}}-2 \ln \relax (x )\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 61, normalized size = 2.03 \begin {gather*} -\frac {25 \, x^{4} + 100 \, x^{3} + 25 \, {\left (x^{2} + 4 \, x\right )} \log \relax (x)^{2} + 2 \, {\left (25 \, x^{3} + 100 \, x^{2} - 2\right )} \log \relax (x) - 4 \, x - 4}{25 \, {\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 25, normalized size = 0.83 \begin {gather*} \frac {\frac {4\,x}{25}+\frac {4\,\ln \relax (x)}{25}+\frac {4}{25}}{{\left (x+\ln \relax (x)\right )}^2}-x^2-4\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 34, normalized size = 1.13 \begin {gather*} - x^{2} - 4 x + \frac {4 x + 4 \log {\relax (x )} + 4}{25 x^{2} + 50 x \log {\relax (x )} + 25 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________