Optimal. Leaf size=25 \[ 9 e^{\frac {1}{5} (-4+2 x-\log (5))} \left (4-\log \left (x^4\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 41, normalized size of antiderivative = 1.64, number of steps used = 8, number of rules used = 5, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 14, 2194, 2178, 2554} \begin {gather*} \frac {36 e^{\frac {2 x}{5}-\frac {4}{5}}}{\sqrt [5]{5}}-\frac {9 e^{\frac {2 x}{5}-\frac {4}{5}} \log \left (x^4\right )}{\sqrt [5]{5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {1}{5} (-4+2 x-\log (5))} (-180+72 x)-18 e^{\frac {1}{5} (-4+2 x-\log (5))} x \log \left (x^4\right )}{x} \, dx\\ &=\frac {1}{5} \int \left (\frac {72 e^{-\frac {4}{5}+\frac {2 x}{5}}}{\sqrt [5]{5}}-\frac {36\ 5^{4/5} e^{-\frac {4}{5}+\frac {2 x}{5}}}{x}-\frac {18 e^{-\frac {4}{5}+\frac {2 x}{5}} \log \left (x^4\right )}{\sqrt [5]{5}}\right ) \, dx\\ &=-\frac {18 \int e^{-\frac {4}{5}+\frac {2 x}{5}} \log \left (x^4\right ) \, dx}{5 \sqrt [5]{5}}+\frac {72 \int e^{-\frac {4}{5}+\frac {2 x}{5}} \, dx}{5 \sqrt [5]{5}}-\frac {36 \int \frac {e^{-\frac {4}{5}+\frac {2 x}{5}}}{x} \, dx}{\sqrt [5]{5}}\\ &=\frac {36 e^{-\frac {4}{5}+\frac {2 x}{5}}}{\sqrt [5]{5}}-\frac {36 \text {Ei}\left (\frac {2 x}{5}\right )}{\sqrt [5]{5} e^{4/5}}-\frac {9 e^{-\frac {4}{5}+\frac {2 x}{5}} \log \left (x^4\right )}{\sqrt [5]{5}}+\frac {18 \int \frac {10 e^{-\frac {4}{5}+\frac {2 x}{5}}}{x} \, dx}{5 \sqrt [5]{5}}\\ &=\frac {36 e^{-\frac {4}{5}+\frac {2 x}{5}}}{\sqrt [5]{5}}-\frac {36 \text {Ei}\left (\frac {2 x}{5}\right )}{\sqrt [5]{5} e^{4/5}}-\frac {9 e^{-\frac {4}{5}+\frac {2 x}{5}} \log \left (x^4\right )}{\sqrt [5]{5}}+\frac {36 \int \frac {e^{-\frac {4}{5}+\frac {2 x}{5}}}{x} \, dx}{\sqrt [5]{5}}\\ &=\frac {36 e^{-\frac {4}{5}+\frac {2 x}{5}}}{\sqrt [5]{5}}-\frac {9 e^{-\frac {4}{5}+\frac {2 x}{5}} \log \left (x^4\right )}{\sqrt [5]{5}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.88 \begin {gather*} -\frac {9 e^{\frac {2}{5} (-2+x)} \left (-4+\log \left (x^4\right )\right )}{\sqrt [5]{5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 29, normalized size = 1.16 \begin {gather*} -9 \, e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )} \log \left (x^{4}\right ) + 36 \, e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {18 \, {\left (x e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )} \log \left (x^{4}\right ) - 2 \, {\left (2 \, x - 5\right )} e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )}\right )}}{5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 1.20
method | result | size |
norman | \(-9 \,{\mathrm e}^{-\frac {\ln \relax (5)}{5}+\frac {2 x}{5}-\frac {4}{5}} \ln \left (x^{4}\right )+36 \,{\mathrm e}^{-\frac {\ln \relax (5)}{5}+\frac {2 x}{5}-\frac {4}{5}}\) | \(30\) |
default | \(-9 \left (\ln \left (x^{4}\right )-4 \ln \relax (x )\right ) {\mathrm e}^{-\frac {\ln \relax (5)}{5}+\frac {2 x}{5}-\frac {4}{5}}+36 \,{\mathrm e}^{-\frac {\ln \relax (5)}{5}+\frac {2 x}{5}-\frac {4}{5}}-36 \ln \relax (x ) {\mathrm e}^{-\frac {\ln \relax (5)}{5}+\frac {2 x}{5}-\frac {4}{5}}\) | \(49\) |
risch | \(-\frac {36 \ln \relax (x ) 5^{\frac {4}{5}} {\mathrm e}^{-\frac {4}{5}+\frac {2 x}{5}}}{5}+\frac {9 i 5^{\frac {4}{5}} {\mathrm e}^{-\frac {4}{5}+\frac {2 x}{5}} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+\pi \mathrm {csgn}\left (i x^{4}\right )^{3}-8 i\right )}{10}\) | \(210\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 29, normalized size = 1.16 \begin {gather*} -9 \, e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )} \log \left (x^{4}\right ) + 36 \, e^{\left (\frac {2}{5} \, x - \frac {1}{5} \, \log \relax (5) - \frac {4}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 17, normalized size = 0.68 \begin {gather*} -\frac {9\,5^{4/5}\,{\mathrm {e}}^{\frac {2\,x}{5}-\frac {4}{5}}\,\left (\ln \left (x^4\right )-4\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 29, normalized size = 1.16 \begin {gather*} \frac {\left (- 9 \cdot 5^{\frac {4}{5}} \log {\left (x^{4} \right )} + 36 \cdot 5^{\frac {4}{5}}\right ) e^{\frac {2 x}{5} - \frac {4}{5}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________