Optimal. Leaf size=20 \[ -2+x \log (3)+5 \left (x+\frac {1}{x (6+\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 9, number of rules used = 6, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 6688, 6742, 2306, 2309, 2178} \begin {gather*} x (5+\log (3))+\frac {5}{x (\log (x)+6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-35+x^2 (180+36 \log (3))+\left (-5+60 x^2+12 x^2 \log (3)\right ) \log (x)+\left (5 x^2+x^2 \log (3)\right ) \log ^2(x)}{36 x^2+12 x^2 \log (x)+x^2 \log ^2(x)} \, dx\\ &=\int \frac {-35+36 x^2 (5+\log (3))+\left (-5+12 x^2 (5+\log (3))\right ) \log (x)+x^2 (5+\log (3)) \log ^2(x)}{x^2 (6+\log (x))^2} \, dx\\ &=\int \left (5 \left (1+\frac {\log (3)}{5}\right )-\frac {5}{x^2 (6+\log (x))^2}-\frac {5}{x^2 (6+\log (x))}\right ) \, dx\\ &=x (5+\log (3))-5 \int \frac {1}{x^2 (6+\log (x))^2} \, dx-5 \int \frac {1}{x^2 (6+\log (x))} \, dx\\ &=x (5+\log (3))+\frac {5}{x (6+\log (x))}+5 \int \frac {1}{x^2 (6+\log (x))} \, dx-5 \operatorname {Subst}\left (\int \frac {e^{-x}}{6+x} \, dx,x,\log (x)\right )\\ &=-5 e^6 \text {Ei}(-6-\log (x))+x (5+\log (3))+\frac {5}{x (6+\log (x))}+5 \operatorname {Subst}\left (\int \frac {e^{-x}}{6+x} \, dx,x,\log (x)\right )\\ &=x (5+\log (3))+\frac {5}{x (6+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 18, normalized size = 0.90 \begin {gather*} x (5+\log (3))+\frac {5}{x (6+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 40, normalized size = 2.00 \begin {gather*} \frac {6 \, x^{2} \log \relax (3) + 30 \, x^{2} + {\left (x^{2} \log \relax (3) + 5 \, x^{2}\right )} \log \relax (x) + 5}{x \log \relax (x) + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 19, normalized size = 0.95 \begin {gather*} x {\left (\log \relax (3) + 5\right )} + \frac {5}{x \log \relax (x) + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 1.00
method | result | size |
risch | \(x \ln \relax (3)+5 x +\frac {5}{\left (\ln \relax (x )+6\right ) x}\) | \(20\) |
default | \(\frac {5+30 x^{2}+5 x^{2} \ln \relax (x )}{x \left (\ln \relax (x )+6\right )}+x \ln \relax (3)\) | \(30\) |
norman | \(\frac {5+\left (30+6 \ln \relax (3)\right ) x^{2}+\left (5+\ln \relax (3)\right ) x^{2} \ln \relax (x )}{x \left (\ln \relax (x )+6\right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 32, normalized size = 1.60 \begin {gather*} \frac {x^{2} {\left (\log \relax (3) + 5\right )} \log \relax (x) + 6 \, x^{2} {\left (\log \relax (3) + 5\right )} + 5}{x \log \relax (x) + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 25, normalized size = 1.25 \begin {gather*} 5\,x+x\,\ln \relax (3)+\frac {5\,x}{x^2\,\ln \relax (x)+6\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.75 \begin {gather*} x \left (\log {\relax (3 )} + 5\right ) + \frac {5}{x \log {\relax (x )} + 6 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________