Optimal. Leaf size=28 \[ e^{16-\frac {x^2 \left (-3+3 \log ^2(x)\right )}{1+e^x+\log ^2(3)}} \]
________________________________________________________________________________________
Rubi [F] time = 28.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {16+16 e^x+3 x^2+16 \log ^2(3)-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) \left (6 x+e^x \left (6 x-3 x^2\right )+6 x \log ^2(3)+\left (-6 x-6 e^x x-6 x \log ^2(3)\right ) \log (x)+\left (-6 x+e^x \left (-6 x+3 x^2\right )-6 x \log ^2(3)\right ) \log ^2(x)\right )}{1+e^{2 x}+2 \log ^2(3)+\log ^4(3)+e^x \left (2+2 \log ^2(3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {16+16 e^x+3 x^2+16 \log ^2(3)-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) \left (e^x \left (6 x-3 x^2\right )+x \left (6+6 \log ^2(3)\right )+\left (-6 x-6 e^x x-6 x \log ^2(3)\right ) \log (x)+\left (-6 x+e^x \left (-6 x+3 x^2\right )-6 x \log ^2(3)\right ) \log ^2(x)\right )}{1+e^{2 x}+2 \log ^2(3)+\log ^4(3)+e^x \left (2+2 \log ^2(3)\right )} \, dx\\ &=\int \frac {3 \exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \left (-e^x (-2+x)+2 \left (1+\log ^2(3)\right )-2 \left (1+e^x+\log ^2(3)\right ) \log (x)+\left (e^x (-2+x)-2 \left (1+\log ^2(3)\right )\right ) \log ^2(x)\right )}{\left (1+e^x+\log ^2(3)\right )^2} \, dx\\ &=3 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \left (-e^x (-2+x)+2 \left (1+\log ^2(3)\right )-2 \left (1+e^x+\log ^2(3)\right ) \log (x)+\left (e^x (-2+x)-2 \left (1+\log ^2(3)\right )\right ) \log ^2(x)\right )}{\left (1+e^x+\log ^2(3)\right )^2} \, dx\\ &=3 \int \left (-\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \left (1+\log ^2(3)\right ) \left (-1+\log ^2(x)\right )}{\left (1+e^x+\log ^2(3)\right )^2}+\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \left (2-x-2 \log (x)-2 \log ^2(x)+x \log ^2(x)\right )}{1+e^x+\log ^2(3)}\right ) \, dx\\ &=3 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \left (2-x-2 \log (x)-2 \log ^2(x)+x \log ^2(x)\right )}{1+e^x+\log ^2(3)} \, dx-\left (3 \left (1+\log ^2(3)\right )\right ) \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \left (-1+\log ^2(x)\right )}{\left (1+e^x+\log ^2(3)\right )^2} \, dx\\ &=3 \int \left (\frac {2 \exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x}{1+e^x+\log ^2(3)}-\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2}{1+e^x+\log ^2(3)}-\frac {2 \exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \log (x)}{1+e^x+\log ^2(3)}-\frac {2 \exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \log ^2(x)}{1+e^x+\log ^2(3)}+\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) \, dx-\left (3 \left (1+\log ^2(3)\right )\right ) \int \left (-\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2}{\left (1+e^x+\log ^2(3)\right )^2}+\frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \log ^2(x)}{\left (1+e^x+\log ^2(3)\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2}{1+e^x+\log ^2(3)} \, dx\right )+3 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \log ^2(x)}{1+e^x+\log ^2(3)} \, dx+6 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x}{1+e^x+\log ^2(3)} \, dx-6 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \log (x)}{1+e^x+\log ^2(3)} \, dx-6 \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x \log ^2(x)}{1+e^x+\log ^2(3)} \, dx+\left (3 \left (1+\log ^2(3)\right )\right ) \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2}{\left (1+e^x+\log ^2(3)\right )^2} \, dx-\left (3 \left (1+\log ^2(3)\right )\right ) \int \frac {\exp \left (\frac {16 e^x+3 x^2+16 \left (1+\log ^2(3)\right )-3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}\right ) x^2 \log ^2(x)}{\left (1+e^x+\log ^2(3)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 40, normalized size = 1.43 \begin {gather*} e^{16+\frac {3 x^2}{1+e^x+\log ^2(3)}-\frac {3 x^2 \log ^2(x)}{1+e^x+\log ^2(3)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 39, normalized size = 1.39 \begin {gather*} e^{\left (-\frac {3 \, x^{2} \log \relax (x)^{2} - 3 \, x^{2} - 16 \, \log \relax (3)^{2} - 16 \, e^{x} - 16}{\log \relax (3)^{2} + e^{x} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (2 \, x \log \relax (3)^{2} - {\left (2 \, x \log \relax (3)^{2} - {\left (x^{2} - 2 \, x\right )} e^{x} + 2 \, x\right )} \log \relax (x)^{2} - {\left (x^{2} - 2 \, x\right )} e^{x} - 2 \, {\left (x \log \relax (3)^{2} + x e^{x} + x\right )} \log \relax (x) + 2 \, x\right )} e^{\left (-\frac {3 \, x^{2} \log \relax (x)^{2} - 3 \, x^{2} - 16 \, \log \relax (3)^{2} - 16 \, e^{x} - 16}{\log \relax (3)^{2} + e^{x} + 1}\right )}}{\log \relax (3)^{4} + 2 \, {\left (\log \relax (3)^{2} + 1\right )} e^{x} + 2 \, \log \relax (3)^{2} + e^{\left (2 \, x\right )} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.39
method | result | size |
risch | \({\mathrm e}^{\frac {-3 x^{2} \ln \relax (x )^{2}+16 \,{\mathrm e}^{x}+16 \ln \relax (3)^{2}+3 x^{2}+16}{{\mathrm e}^{x}+\ln \relax (3)^{2}+1}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 78, normalized size = 2.79 \begin {gather*} e^{\left (-\frac {3 \, x^{2} \log \relax (x)^{2}}{\log \relax (3)^{2} + e^{x} + 1} + \frac {3 \, x^{2}}{\log \relax (3)^{2} + e^{x} + 1} + \frac {16 \, \log \relax (3)^{2}}{\log \relax (3)^{2} + e^{x} + 1} + \frac {16 \, e^{x}}{\log \relax (3)^{2} + e^{x} + 1} + \frac {16}{\log \relax (3)^{2} + e^{x} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.58, size = 82, normalized size = 2.93 \begin {gather*} {\mathrm {e}}^{\frac {3\,x^2}{{\mathrm {e}}^x+{\ln \relax (3)}^2+1}}\,{\mathrm {e}}^{\frac {16\,{\mathrm {e}}^x}{{\mathrm {e}}^x+{\ln \relax (3)}^2+1}}\,{\mathrm {e}}^{\frac {16}{{\mathrm {e}}^x+{\ln \relax (3)}^2+1}}\,{\mathrm {e}}^{-\frac {3\,x^2\,{\ln \relax (x)}^2}{{\mathrm {e}}^x+{\ln \relax (3)}^2+1}}\,{\mathrm {e}}^{\frac {16\,{\ln \relax (3)}^2}{{\mathrm {e}}^x+{\ln \relax (3)}^2+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.30, size = 39, normalized size = 1.39 \begin {gather*} e^{\frac {- 3 x^{2} \log {\relax (x )}^{2} + 3 x^{2} + 16 e^{x} + 16 + 16 \log {\relax (3 )}^{2}}{e^{x} + 1 + \log {\relax (3 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________