Optimal. Leaf size=19 \[ x+\frac {5}{x \left (13+\log ^2(4)-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6, 6688, 6742, 2306, 2309, 2178} \begin {gather*} x+\frac {5}{x \left (-\log (x)+13+\log ^2(4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-60+169 x^2+\left (-5+26 x^2\right ) \log ^2(4)+x^2 \log ^4(4)+\left (5-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)}{x^2 \log ^4(4)+x^2 \left (169+26 \log ^2(4)\right )+\left (-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)} \, dx\\ &=\int \frac {-60+169 x^2+\left (-5+26 x^2\right ) \log ^2(4)+x^2 \log ^4(4)+\left (5-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)}{x^2 \left (169+26 \log ^2(4)+\log ^4(4)\right )+\left (-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)} \, dx\\ &=\int \frac {-60+\left (-5+26 x^2\right ) \log ^2(4)+x^2 \left (169+\log ^4(4)\right )+\left (5-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)}{x^2 \left (169+26 \log ^2(4)+\log ^4(4)\right )+\left (-26 x^2-2 x^2 \log ^2(4)\right ) \log (x)+x^2 \log ^2(x)} \, dx\\ &=\int \frac {-5 \left (12+\log ^2(4)\right )+x^2 \left (13+\log ^2(4)\right )^2+\left (5-2 x^2 \left (13+\log ^2(4)\right )\right ) \log (x)+x^2 \log ^2(x)}{x^2 \left (13 \left (1+\frac {\log ^2(4)}{13}\right )-\log (x)\right )^2} \, dx\\ &=\int \left (1+\frac {5}{x^2 \left (13 \left (1+\frac {\log ^2(4)}{13}\right )-\log (x)\right )^2}+\frac {5}{x^2 \left (-13 \left (1+\frac {\log ^2(4)}{13}\right )+\log (x)\right )}\right ) \, dx\\ &=x+5 \int \frac {1}{x^2 \left (13 \left (1+\frac {\log ^2(4)}{13}\right )-\log (x)\right )^2} \, dx+5 \int \frac {1}{x^2 \left (-13 \left (1+\frac {\log ^2(4)}{13}\right )+\log (x)\right )} \, dx\\ &=x+\frac {5}{x \left (13+\log ^2(4)-\log (x)\right )}+5 \int \frac {1}{x^2 \left (13 \left (1+\frac {\log ^2(4)}{13}\right )-\log (x)\right )} \, dx+5 \operatorname {Subst}\left (\int \frac {e^{-x}}{x-13 \left (1+\frac {\log ^2(4)}{13}\right )} \, dx,x,\log (x)\right )\\ &=x+5 e^{-13-\log ^2(4)} \text {Ei}\left (13+\log ^2(4)-\log (x)\right )+\frac {5}{x \left (13+\log ^2(4)-\log (x)\right )}+5 \operatorname {Subst}\left (\int \frac {e^{-x}}{-x+13 \left (1+\frac {\log ^2(4)}{13}\right )} \, dx,x,\log (x)\right )\\ &=x+\frac {5}{x \left (13+\log ^2(4)-\log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 19, normalized size = 1.00 \begin {gather*} x-\frac {5}{x \left (-13-\log ^2(4)+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 42, normalized size = 2.21 \begin {gather*} \frac {4 \, x^{2} \log \relax (2)^{2} - x^{2} \log \relax (x) + 13 \, x^{2} + 5}{4 \, x \log \relax (2)^{2} - x \log \relax (x) + 13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 1.16 \begin {gather*} x + \frac {5}{4 \, x \log \relax (2)^{2} - x \log \relax (x) + 13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 1.16
method | result | size |
risch | \(x +\frac {5}{\left (13-\ln \relax (x )+4 \ln \relax (2)^{2}\right ) x}\) | \(22\) |
norman | \(\frac {5+\left (4 \ln \relax (2)^{2}+13\right ) x^{2}-x^{2} \ln \relax (x )}{x \left (13-\ln \relax (x )+4 \ln \relax (2)^{2}\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 40, normalized size = 2.11 \begin {gather*} \frac {{\left (4 \, \log \relax (2)^{2} + 13\right )} x^{2} - x^{2} \log \relax (x) + 5}{{\left (4 \, \log \relax (2)^{2} + 13\right )} x - x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.32, size = 21, normalized size = 1.11 \begin {gather*} x+\frac {5}{x\,\left (4\,{\ln \relax (2)}^2-\ln \relax (x)+13\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 1.00 \begin {gather*} x - \frac {5}{x \log {\relax (x )} - 13 x - 4 x \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________