Optimal. Leaf size=22 \[ 5 x^2 \left (4+e^x+x+\frac {5+2 x}{8+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 20, number of rules used = 8, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.151, Rules used = {27, 6688, 12, 6742, 2196, 2176, 2194, 43} \begin {gather*} 5 x^3+5 e^x x^2+30 x^2-55 x-\frac {3520}{x+8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2960 x+1865 x^2+300 x^3+15 x^4+e^x \left (640 x+480 x^2+90 x^3+5 x^4\right )}{(8+x)^2} \, dx\\ &=\int \frac {5 x \left (592+373 x+60 x^2+3 x^3+e^x (2+x) (8+x)^2\right )}{(8+x)^2} \, dx\\ &=5 \int \frac {x \left (592+373 x+60 x^2+3 x^3+e^x (2+x) (8+x)^2\right )}{(8+x)^2} \, dx\\ &=5 \int \left (e^x x (2+x)+\frac {592 x}{(8+x)^2}+\frac {373 x^2}{(8+x)^2}+\frac {60 x^3}{(8+x)^2}+\frac {3 x^4}{(8+x)^2}\right ) \, dx\\ &=5 \int e^x x (2+x) \, dx+15 \int \frac {x^4}{(8+x)^2} \, dx+300 \int \frac {x^3}{(8+x)^2} \, dx+1865 \int \frac {x^2}{(8+x)^2} \, dx+2960 \int \frac {x}{(8+x)^2} \, dx\\ &=5 \int \left (2 e^x x+e^x x^2\right ) \, dx+15 \int \left (192-16 x+x^2+\frac {4096}{(8+x)^2}-\frac {2048}{8+x}\right ) \, dx+300 \int \left (-16+x-\frac {512}{(8+x)^2}+\frac {192}{8+x}\right ) \, dx+1865 \int \left (1+\frac {64}{(8+x)^2}-\frac {16}{8+x}\right ) \, dx+2960 \int \left (-\frac {8}{(8+x)^2}+\frac {1}{8+x}\right ) \, dx\\ &=-55 x+30 x^2+5 x^3-\frac {3520}{8+x}+5 \int e^x x^2 \, dx+10 \int e^x x \, dx\\ &=-55 x+10 e^x x+30 x^2+5 e^x x^2+5 x^3-\frac {3520}{8+x}-10 \int e^x \, dx-10 \int e^x x \, dx\\ &=-10 e^x-55 x+30 x^2+5 e^x x^2+5 x^3-\frac {3520}{8+x}+10 \int e^x \, dx\\ &=-55 x+30 x^2+5 e^x x^2+5 x^3-\frac {3520}{8+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 25, normalized size = 1.14 \begin {gather*} 5 \left (-11 x+\left (6+e^x\right ) x^2+x^3-\frac {704}{8+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 37, normalized size = 1.68 \begin {gather*} \frac {5 \, {\left (x^{4} + 14 \, x^{3} + 37 \, x^{2} + {\left (x^{3} + 8 \, x^{2}\right )} e^{x} - 88 \, x - 704\right )}}{x + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 38, normalized size = 1.73 \begin {gather*} \frac {5 \, {\left (x^{4} + x^{3} e^{x} + 14 \, x^{3} + 8 \, x^{2} e^{x} + 37 \, x^{2} - 88 \, x - 704\right )}}{x + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 29, normalized size = 1.32
method | result | size |
default | \(-\frac {3520}{x +8}-55 x +30 x^{2}+5 x^{3}+5 \,{\mathrm e}^{x} x^{2}\) | \(29\) |
risch | \(-\frac {3520}{x +8}-55 x +30 x^{2}+5 x^{3}+5 \,{\mathrm e}^{x} x^{2}\) | \(29\) |
norman | \(\frac {185 x^{2}+70 x^{3}+5 x^{4}+40 \,{\mathrm e}^{x} x^{2}+5 \,{\mathrm e}^{x} x^{3}}{x +8}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 28, normalized size = 1.27 \begin {gather*} 5 \, x^{3} + 5 \, x^{2} e^{x} + 30 \, x^{2} - 55 \, x - \frac {3520}{x + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 26, normalized size = 1.18 \begin {gather*} x^2\,\left (5\,{\mathrm {e}}^x+30\right )-\frac {3520}{x+8}-55\,x+5\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 1.18 \begin {gather*} 5 x^{3} + 5 x^{2} e^{x} + 30 x^{2} - 55 x - \frac {3520}{x + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________