Optimal. Leaf size=18 \[ -3+4 e^{-x (4+x)}-(-2+x) x \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 22, normalized size of antiderivative = 1.22, number of steps used = 3, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6688, 2236} \begin {gather*} -x^2+4 e^{-x^2-4 x}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2-2 x-8 e^{-4 x-x^2} (2+x)\right ) \, dx\\ &=2 x-x^2-8 \int e^{-4 x-x^2} (2+x) \, dx\\ &=4 e^{-4 x-x^2}+2 x-x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 1.22 \begin {gather*} 4 e^{-4 x-x^2}+2 x-x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 30, normalized size = 1.67 \begin {gather*} -{\left ({\left (x^{2} - 2 \, x\right )} e^{\left (x^{2} + 4 \, x\right )} - 4\right )} e^{\left (-x^{2} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 1.17 \begin {gather*} -x^{2} + 2 \, x + 4 \, e^{\left (-x^{2} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 1.06
method | result | size |
risch | \(-x^{2}+2 x +4 \,{\mathrm e}^{-\left (4+x \right ) x}\) | \(19\) |
default | \(-x^{2}+2 x +4 \,{\mathrm e}^{-x^{2}-4 x}\) | \(22\) |
norman | \(\left (4+2 x \,{\mathrm e}^{x^{2}+4 x}-x^{2} {\mathrm e}^{x^{2}+4 x}\right ) {\mathrm e}^{-x^{2}-4 x}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 60, normalized size = 3.33 \begin {gather*} -8 \, \sqrt {\pi } \operatorname {erf}\left (x + 2\right ) e^{4} - x^{2} - 4 i \, {\left (\frac {2 i \, \sqrt {\pi } {\left (x + 2\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 2\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 2\right )}^{2}}} + i \, e^{\left (-{\left (x + 2\right )}^{2}\right )}\right )} e^{4} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 21, normalized size = 1.17 \begin {gather*} 2\,x+4\,{\mathrm {e}}^{-x^2-4\,x}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.94 \begin {gather*} - x^{2} + 2 x + 4 e^{- x^{2} - 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________