Optimal. Leaf size=24 \[ 20^{\frac {1}{\log \left (\left (2+\frac {x}{4}-\log \left (3+e^{e^x}\right )\right )^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 6.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20^{\frac {1}{\log \left (\frac {1}{16} \left (64+16 x+x^2+(-64-8 x) \log \left (3+e^{e^x}\right )+16 \log ^2\left (3+e^{e^x}\right )\right )\right )}} \left (6 \log (20)+e^{e^x} \left (2 \log (20)-8 e^x \log (20)\right )\right )}{\left (-24+e^{e^x} (-8-x)-3 x+\left (12+4 e^{e^x}\right ) \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (64+16 x+x^2+(-64-8 x) \log \left (3+e^{e^x}\right )+16 \log ^2\left (3+e^{e^x}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{1+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} \left (-3-e^{e^x}+4 e^{e^x+x}\right ) \log (20)}{\left (3+e^{e^x}\right ) \left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )} \, dx\\ &=\log (20) \int \frac {2^{1+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} \left (-3-e^{e^x}+4 e^{e^x+x}\right )}{\left (3+e^{e^x}\right ) \left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )} \, dx\\ &=\log (20) \int \left (-\frac {2^{1+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}}}{\left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}+\frac {2^{3+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} e^{e^x+x}}{\left (3+e^{e^x}\right ) \left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}\right ) \, dx\\ &=-\left (\log (20) \int \frac {2^{1+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}}}{\left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )} \, dx\right )+\log (20) \int \frac {2^{3+\frac {2}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} 5^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} e^{e^x+x}}{\left (3+e^{e^x}\right ) \left (8+x-4 \log \left (3+e^{e^x}\right )\right ) \log ^2\left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 24, normalized size = 1.00 \begin {gather*} 20^{\frac {1}{\log \left (\frac {1}{16} \left (8+x-4 \log \left (3+e^{e^x}\right )\right )^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 32, normalized size = 1.33 \begin {gather*} 20^{\left (\frac {1}{\log \left (\frac {1}{16} \, x^{2} - \frac {1}{2} \, {\left (x + 8\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + \log \left (e^{\left (e^{x}\right )} + 3\right )^{2} + x + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (4 \, e^{x} \log \left (20\right ) - \log \left (20\right )\right )} e^{\left (e^{x}\right )} - 3 \, \log \left (20\right )\right )} 20^{\left (\frac {1}{\log \left (\frac {1}{16} \, x^{2} - \frac {1}{2} \, {\left (x + 8\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + \log \left (e^{\left (e^{x}\right )} + 3\right )^{2} + x + 4\right )}\right )}}{{\left ({\left (x + 8\right )} e^{\left (e^{x}\right )} - 4 \, {\left (e^{\left (e^{x}\right )} + 3\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + 3 \, x + 24\right )} \log \left (\frac {1}{16} \, x^{2} - \frac {1}{2} \, {\left (x + 8\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + \log \left (e^{\left (e^{x}\right )} + 3\right )^{2} + x + 4\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.52, size = 131, normalized size = 5.46
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \left (2 \ln \relax (2)+\ln \relax (5)\right )}{i \pi \mathrm {csgn}\left (i \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )^{2}\right ) \mathrm {csgn}\left (i \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )\right )^{2}+8 \ln \relax (2)-4 \ln \left (-4 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+3\right )+x +8\right )}}\) | \(131\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {{\left ({\left (4 \, e^{x} \log \left (20\right ) - \log \left (20\right )\right )} e^{\left (e^{x}\right )} - 3 \, \log \left (20\right )\right )} 20^{\left (\frac {1}{\log \left (\frac {1}{16} \, x^{2} - \frac {1}{2} \, {\left (x + 8\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + \log \left (e^{\left (e^{x}\right )} + 3\right )^{2} + x + 4\right )}\right )}}{{\left ({\left (x + 8\right )} e^{\left (e^{x}\right )} - 4 \, {\left (e^{\left (e^{x}\right )} + 3\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + 3 \, x + 24\right )} \log \left (\frac {1}{16} \, x^{2} - \frac {1}{2} \, {\left (x + 8\right )} \log \left (e^{\left (e^{x}\right )} + 3\right ) + \log \left (e^{\left (e^{x}\right )} + 3\right )^{2} + x + 4\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.83, size = 38, normalized size = 1.58 \begin {gather*} {20}^{\frac {1}{\ln \left (\frac {x^2}{16}-\frac {x\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}+3\right )}{2}+x+{\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}+3\right )}^2-4\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}+3\right )+4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________