Optimal. Leaf size=27 \[ e^{\frac {\left (-1+\frac {5 e^x (2-x)}{x}\right ) (1+x)}{\log (3)}}+x \]
________________________________________________________________________________________
Rubi [F] time = 2.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-x-x^2+e^x \left (10+5 x-5 x^2\right )}{x \log (3)}} \left (-x^2+e^x \left (-10+10 x-5 x^3\right )\right )+x^2 \log (3)}{x^2 \log (3)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{\frac {-x-x^2+e^x \left (10+5 x-5 x^2\right )}{x \log (3)}} \left (-x^2+e^x \left (-10+10 x-5 x^3\right )\right )+x^2 \log (3)}{x^2} \, dx}{\log (3)}\\ &=\frac {\int \left (-\frac {\exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \left (10 e^x-10 e^x x+x^2+5 e^x x^3\right )}{x^2}+\log (3)\right ) \, dx}{\log (3)}\\ &=x-\frac {\int \frac {\exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \left (10 e^x-10 e^x x+x^2+5 e^x x^3\right )}{x^2} \, dx}{\log (3)}\\ &=x-\frac {\int \frac {\exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \left (x^2+5 e^x \left (2-2 x+x^3\right )\right )}{x^2} \, dx}{\log (3)}\\ &=x-\frac {\int \left (\exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right )+\frac {5 \exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \left (2-2 x+x^3\right )}{x^2}\right ) \, dx}{\log (3)}\\ &=x-\frac {\int \exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \, dx}{\log (3)}-\frac {5 \int \frac {\exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \left (2-2 x+x^3\right )}{x^2} \, dx}{\log (3)}\\ &=x-\frac {\int \exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \, dx}{\log (3)}-\frac {5 \int \left (\frac {2 \exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right )}{x^2}-\frac {2 \exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right )}{x}+\exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) x\right ) \, dx}{\log (3)}\\ &=x-\frac {\int \exp \left (-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) \, dx}{\log (3)}-\frac {5 \int \exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right ) x \, dx}{\log (3)}-\frac {10 \int \frac {\exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right )}{x^2} \, dx}{\log (3)}+\frac {10 \int \frac {\exp \left (x-\frac {(1+x) \left (5 e^x (-2+x)+x\right )}{x \log (3)}\right )}{x} \, dx}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 36, normalized size = 1.33 \begin {gather*} e^{-\frac {1}{\log (3)}-\frac {x}{\log (3)}-\frac {5 e^x (-2+x) (1+x)}{x \log (3)}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 29, normalized size = 1.07 \begin {gather*} x + e^{\left (-\frac {x^{2} + 5 \, {\left (x^{2} - x - 2\right )} e^{x} + x}{x \log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \log \relax (3) - {\left (x^{2} + 5 \, {\left (x^{3} - 2 \, x + 2\right )} e^{x}\right )} e^{\left (-\frac {x^{2} + 5 \, {\left (x^{2} - x - 2\right )} e^{x} + x}{x \log \relax (3)}\right )}}{x^{2} \log \relax (3)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 27, normalized size = 1.00
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {\left (x +1\right ) \left (5 \,{\mathrm e}^{x} x -10 \,{\mathrm e}^{x}+x \right )}{\ln \relax (3) x}}\) | \(27\) |
norman | \(\frac {x^{2}+x \,{\mathrm e}^{\frac {\left (-5 x^{2}+5 x +10\right ) {\mathrm e}^{x}-x^{2}-x}{x \ln \relax (3)}}}{x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 56, normalized size = 2.07 \begin {gather*} \frac {x \log \relax (3) + e^{\left (-\frac {5 \, x e^{x}}{\log \relax (3)} - \frac {x}{\log \relax (3)} + \frac {5 \, e^{x}}{\log \relax (3)} + \frac {10 \, e^{x}}{x \log \relax (3)} - \frac {1}{\log \relax (3)}\right )} \log \relax (3)}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 49, normalized size = 1.81 \begin {gather*} x+{\mathrm {e}}^{-\frac {x}{\ln \relax (3)}}\,{\mathrm {e}}^{\frac {10\,{\mathrm {e}}^x}{x\,\ln \relax (3)}}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^x}{\ln \relax (3)}}\,{\mathrm {e}}^{-\frac {1}{\ln \relax (3)}}\,{\mathrm {e}}^{-\frac {5\,x\,{\mathrm {e}}^x}{\ln \relax (3)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 26, normalized size = 0.96 \begin {gather*} x + e^{\frac {- x^{2} - x + \left (- 5 x^{2} + 5 x + 10\right ) e^{x}}{x \log {\relax (3 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________