Optimal. Leaf size=10 \[ \frac {\log (9-x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1593, 6742, 36, 31, 29, 2395} \begin {gather*} \frac {\log (9-x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 1593
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+(9-x) \log (9-x)}{(-9+x) x^2} \, dx\\ &=\int \left (\frac {1}{(-9+x) x}-\frac {\log (9-x)}{x^2}\right ) \, dx\\ &=\int \frac {1}{(-9+x) x} \, dx-\int \frac {\log (9-x)}{x^2} \, dx\\ &=\frac {\log (9-x)}{x}+\frac {1}{9} \int \frac {1}{-9+x} \, dx-\frac {1}{9} \int \frac {1}{x} \, dx+\int \frac {1}{(9-x) x} \, dx\\ &=\frac {1}{9} \log (9-x)+\frac {\log (9-x)}{x}-\frac {\log (x)}{9}+\frac {1}{9} \int \frac {1}{9-x} \, dx+\frac {1}{9} \int \frac {1}{x} \, dx\\ &=\frac {\log (9-x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 10, normalized size = 1.00 \begin {gather*} \frac {\log (9-x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 10, normalized size = 1.00 \begin {gather*} \frac {\log \left (-x + 9\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 10, normalized size = 1.00 \begin {gather*} \frac {\log \left (-x + 9\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 11, normalized size = 1.10
method | result | size |
norman | \(\frac {\ln \left (9-x \right )}{x}\) | \(11\) |
risch | \(\frac {\ln \left (9-x \right )}{x}\) | \(11\) |
derivativedivides | \(\frac {\ln \left (9-x \right )}{9}+\frac {\ln \left (9-x \right ) \left (9-x \right )}{9 x}\) | \(26\) |
default | \(\frac {\ln \left (9-x \right )}{9}+\frac {\ln \left (9-x \right ) \left (9-x \right )}{9 x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 10, normalized size = 1.00 \begin {gather*} \frac {\log \left (-x + 9\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.29, size = 10, normalized size = 1.00 \begin {gather*} \frac {\ln \left (9-x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 5, normalized size = 0.50 \begin {gather*} \frac {\log {\left (9 - x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________