Optimal. Leaf size=27 \[ \frac {4}{25 (1-x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x+e^{e^{25 x^2}} \left (8-16 x+e^{25 x^2} \left (400 x^2-400 x^3\right )\right )}{-25+75 x^2-75 x^4+25 x^6+e^{3 e^{25 x^2}} \left (-25 x^3+75 x^4-75 x^5+25 x^6\right )+e^{2 e^{25 x^2}} \left (-75 x^2+150 x^3-150 x^5+75 x^6\right )+e^{e^{25 x^2}} \left (-75 x+75 x^2+150 x^3-150 x^4-75 x^5+75 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (2 x+50 e^{e^{25 x^2}+25 x^2} (-1+x) x^2+e^{e^{25 x^2}} (-1+2 x)\right )}{25 (1-x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\\ &=\frac {8}{25} \int \frac {2 x+50 e^{e^{25 x^2}+25 x^2} (-1+x) x^2+e^{e^{25 x^2}} (-1+2 x)}{(1-x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\\ &=\frac {8}{25} \int \left (-\frac {2 x}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3}-\frac {50 e^{e^{25 x^2}+25 x^2} x^2}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3}-\frac {e^{e^{25 x^2}} (-1+2 x)}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3}\right ) \, dx\\ &=-\left (\frac {8}{25} \int \frac {e^{e^{25 x^2}} (-1+2 x)}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\right )-\frac {16}{25} \int \frac {x}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-16 \int \frac {e^{e^{25 x^2}+25 x^2} x^2}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\\ &=-\left (\frac {8}{25} \int \left (\frac {e^{e^{25 x^2}}}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3}+\frac {2 e^{e^{25 x^2}}}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3}\right ) \, dx\right )-\frac {16}{25} \int \left (\frac {1}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3}+\frac {1}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3}\right ) \, dx-16 \int \left (\frac {e^{e^{25 x^2}+25 x^2}}{\left (1+x+e^{e^{25 x^2}} x\right )^3}+\frac {e^{e^{25 x^2}+25 x^2}}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3}+\frac {2 e^{e^{25 x^2}+25 x^2}}{(-1+x) \left (1+x+e^{e^{25 x^2}} x\right )^3}\right ) \, dx\\ &=-\left (\frac {8}{25} \int \frac {e^{e^{25 x^2}}}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\right )-\frac {16}{25} \int \frac {1}{(-1+x)^3 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-\frac {16}{25} \int \frac {1}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-\frac {16}{25} \int \frac {e^{e^{25 x^2}}}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-16 \int \frac {e^{e^{25 x^2}+25 x^2}}{\left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-16 \int \frac {e^{e^{25 x^2}+25 x^2}}{(-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx-32 \int \frac {e^{e^{25 x^2}+25 x^2}}{(-1+x) \left (1+x+e^{e^{25 x^2}} x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.35, size = 25, normalized size = 0.93 \begin {gather*} \frac {4}{25 (-1+x)^2 \left (1+x+e^{e^{25 x^2}} x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 60, normalized size = 2.22 \begin {gather*} \frac {4}{25 \, {\left (x^{4} - 2 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, e^{\left (25 \, x^{2}\right )}\right )} + 2 \, {\left (x^{4} - x^{3} - x^{2} + x\right )} e^{\left (e^{\left (25 \, x^{2}\right )}\right )} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 100, normalized size = 3.70 \begin {gather*} \frac {4}{25 \, {\left (x^{4} e^{\left (2 \, e^{\left (25 \, x^{2}\right )}\right )} + 2 \, x^{4} e^{\left (e^{\left (25 \, x^{2}\right )}\right )} + x^{4} - 2 \, x^{3} e^{\left (2 \, e^{\left (25 \, x^{2}\right )}\right )} - 2 \, x^{3} e^{\left (e^{\left (25 \, x^{2}\right )}\right )} + x^{2} e^{\left (2 \, e^{\left (25 \, x^{2}\right )}\right )} - 2 \, x^{2} e^{\left (e^{\left (25 \, x^{2}\right )}\right )} - 2 \, x^{2} + 2 \, x e^{\left (e^{\left (25 \, x^{2}\right )}\right )} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.00
method | result | size |
risch | \(\frac {4}{25 \left (x^{2}-2 x +1\right ) \left (x +1+x \,{\mathrm e}^{{\mathrm e}^{25 x^{2}}}\right )^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 60, normalized size = 2.22 \begin {gather*} \frac {4}{25 \, {\left (x^{4} - 2 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, e^{\left (25 \, x^{2}\right )}\right )} + 2 \, {\left (x^{4} - x^{3} - x^{2} + x\right )} e^{\left (e^{\left (25 \, x^{2}\right )}\right )} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 92, normalized size = 3.41 \begin {gather*} \frac {4\,\left (x-50\,x^2\,{\mathrm {e}}^{25\,x^2}+50\,x^4\,{\mathrm {e}}^{25\,x^2}-1\right )}{25\,{\left (x-1\right )}^3\,\left (50\,x^2\,{\mathrm {e}}^{25\,x^2}+50\,x^3\,{\mathrm {e}}^{25\,x^2}+1\right )\,\left ({\left (x+1\right )}^2+x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^{25\,x^2}}+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{25\,x^2}}\,\left (x+1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 65, normalized size = 2.41 \begin {gather*} \frac {4}{25 x^{4} - 50 x^{2} + \left (25 x^{4} - 50 x^{3} + 25 x^{2}\right ) e^{2 e^{25 x^{2}}} + \left (50 x^{4} - 50 x^{3} - 50 x^{2} + 50 x\right ) e^{e^{25 x^{2}}} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________