Optimal. Leaf size=30 \[ \left (1+\frac {\left (5+5 e^2\right ) x^2}{\left (-3-e^4\right ) \log \left (x^2\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 49, normalized size of antiderivative = 1.63, number of steps used = 7, number of rules used = 4, integrand size = 121, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6, 12, 6688, 6712} \begin {gather*} \frac {25 \left (1+e^2\right )^2 x^4}{\left (3+e^4\right )^2 \log ^2\left (x^2\right )}-\frac {10 \left (1+e^2\right ) x^2}{\left (3+e^4\right ) \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6688
Rule 6712
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-100 e^4 x^3+\left (-100-200 e^2\right ) x^3+\left (60 x+100 x^3+100 e^4 x^3+e^4 \left (20 x+20 e^2 x\right )+e^2 \left (60 x+200 x^3\right )\right ) \log \left (x^2\right )+\left (-60 x-60 e^2 x+e^4 \left (-20 x-20 e^2 x\right )\right ) \log ^2\left (x^2\right )}{\left (9+6 e^4+e^8\right ) \log ^3\left (x^2\right )} \, dx\\ &=\int \frac {\left (-100-200 e^2-100 e^4\right ) x^3+\left (60 x+100 x^3+100 e^4 x^3+e^4 \left (20 x+20 e^2 x\right )+e^2 \left (60 x+200 x^3\right )\right ) \log \left (x^2\right )+\left (-60 x-60 e^2 x+e^4 \left (-20 x-20 e^2 x\right )\right ) \log ^2\left (x^2\right )}{\left (9+6 e^4+e^8\right ) \log ^3\left (x^2\right )} \, dx\\ &=\frac {\int \frac {\left (-100-200 e^2-100 e^4\right ) x^3+\left (60 x+100 x^3+100 e^4 x^3+e^4 \left (20 x+20 e^2 x\right )+e^2 \left (60 x+200 x^3\right )\right ) \log \left (x^2\right )+\left (-60 x-60 e^2 x+e^4 \left (-20 x-20 e^2 x\right )\right ) \log ^2\left (x^2\right )}{\log ^3\left (x^2\right )} \, dx}{\left (3+e^4\right )^2}\\ &=\frac {\int \frac {20 \left (1+e^2\right ) x \left (1-\log \left (x^2\right )\right ) \left (-5 \left (1+e^2\right ) x^2+\left (3+e^4\right ) \log \left (x^2\right )\right )}{\log ^3\left (x^2\right )} \, dx}{\left (3+e^4\right )^2}\\ &=\frac {\left (20 \left (1+e^2\right )\right ) \int \frac {x \left (1-\log \left (x^2\right )\right ) \left (-5 \left (1+e^2\right ) x^2+\left (3+e^4\right ) \log \left (x^2\right )\right )}{\log ^3\left (x^2\right )} \, dx}{\left (3+e^4\right )^2}\\ &=-\frac {\left (10 \left (1+e^2\right )\right ) \operatorname {Subst}\left (\int \left (3+e^4-5 \left (1+e^2\right ) x\right ) \, dx,x,\frac {x^2}{\log \left (x^2\right )}\right )}{\left (3+e^4\right )^2}\\ &=\frac {25 \left (1+e^2\right )^2 x^4}{\left (3+e^4\right )^2 \log ^2\left (x^2\right )}-\frac {10 \left (1+e^2\right ) x^2}{\left (3+e^4\right ) \log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 51, normalized size = 1.70 \begin {gather*} -\frac {20 \left (1+e^2\right ) \left (-\frac {5 \left (1+e^2\right ) x^4}{4 \log ^2\left (x^2\right )}+\frac {\left (3+e^4\right ) x^2}{2 \log \left (x^2\right )}\right )}{\left (3+e^4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 69, normalized size = 2.30 \begin {gather*} \frac {5 \, {\left (5 \, x^{4} e^{4} + 10 \, x^{4} e^{2} + 5 \, x^{4} - 2 \, {\left (x^{2} e^{6} + x^{2} e^{4} + 3 \, x^{2} e^{2} + 3 \, x^{2}\right )} \log \left (x^{2}\right )\right )}}{{\left (e^{8} + 6 \, e^{4} + 9\right )} \log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 100, normalized size = 3.33 \begin {gather*} \frac {5 \, {\left (\frac {5 \, x^{4} e^{4}}{\log \left (x^{2}\right )^{2}} + \frac {10 \, x^{4} e^{2}}{\log \left (x^{2}\right )^{2}} + \frac {5 \, x^{4}}{\log \left (x^{2}\right )^{2}} - \frac {2 \, x^{2} e^{6}}{\log \left (x^{2}\right )} - \frac {2 \, x^{2} e^{4}}{\log \left (x^{2}\right )} - \frac {6 \, x^{2} e^{2}}{\log \left (x^{2}\right )} - \frac {6 \, x^{2}}{\log \left (x^{2}\right )}\right )}}{e^{8} + 6 \, e^{4} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 50, normalized size = 1.67
method | result | size |
norman | \(\frac {\left (-10 \,{\mathrm e}^{2}-10\right ) x^{2} \ln \left (x^{2}\right )+\frac {25 \left (2 \,{\mathrm e}^{2}+{\mathrm e}^{4}+1\right ) x^{4}}{{\mathrm e}^{4}+3}}{\left ({\mathrm e}^{4}+3\right ) \ln \left (x^{2}\right )^{2}}\) | \(50\) |
risch | \(-\frac {5 x^{2} \left (2 \,{\mathrm e}^{6} \ln \left (x^{2}\right )-5 x^{2} {\mathrm e}^{4}+2 \,{\mathrm e}^{4} \ln \left (x^{2}\right )-10 x^{2} {\mathrm e}^{2}+6 \,{\mathrm e}^{2} \ln \left (x^{2}\right )-5 x^{2}+6 \ln \left (x^{2}\right )\right )}{\left ({\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9\right ) \ln \left (x^{2}\right )^{2}}\) | \(72\) |
default | \(\frac {-\frac {30 x^{2}}{\ln \left (x^{2}\right )}+\frac {25 x^{4}}{\ln \left (x^{2}\right )^{2}}+\frac {25 \,{\mathrm e}^{4} x^{4}}{\ln \left (x^{2}\right )^{2}}+\frac {50 \,{\mathrm e}^{2} x^{4}}{\ln \left (x^{2}\right )^{2}}-\frac {10 \,{\mathrm e}^{6} x^{2}}{\ln \left (x^{2}\right )}-\frac {30 \,{\mathrm e}^{2} x^{2}}{\ln \left (x^{2}\right )}-\frac {10 \,{\mathrm e}^{4} x^{2}}{\ln \left (x^{2}\right )}}{{\mathrm e}^{8}+6 \,{\mathrm e}^{4}+9}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 47, normalized size = 1.57 \begin {gather*} \frac {5 \, {\left (5 \, x^{4} {\left (e^{4} + 2 \, e^{2} + 1\right )} - 4 \, x^{2} {\left (e^{6} + e^{4} + 3 \, e^{2} + 3\right )} \log \relax (x)\right )}}{4 \, {\left (e^{8} + 6 \, e^{4} + 9\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.31, size = 55, normalized size = 1.83 \begin {gather*} \frac {25\,x^5\,{\left ({\mathrm {e}}^2+1\right )}^2-x^3\,\ln \left (x^2\right )\,\left (30\,{\mathrm {e}}^2+10\,{\mathrm {e}}^4+10\,{\mathrm {e}}^6+30\right )}{x\,{\ln \left (x^2\right )}^2\,\left (6\,{\mathrm {e}}^4+{\mathrm {e}}^8+9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 75, normalized size = 2.50 \begin {gather*} \frac {25 x^{4} + 50 x^{4} e^{2} + 25 x^{4} e^{4} + \left (- 10 x^{2} e^{6} - 10 x^{2} e^{4} - 30 x^{2} e^{2} - 30 x^{2}\right ) \log {\left (x^{2} \right )}}{\left (9 + 6 e^{4} + e^{8}\right ) \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________