Optimal. Leaf size=28 \[ -4+e^{\frac {-3+e^5+(3+x)^2}{5 (5+x-\log (8))}}+x \]
________________________________________________________________________________________
Rubi [F] time = 2.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125+50 x+5 x^2+(-50-10 x) \log (8)+5 \log ^2(8)+e^{\frac {-6-e^5-6 x-x^2}{-25-5 x+5 \log (8)}} \left (24-e^5+10 x+x^2+(-6-2 x) \log (8)\right )}{125+50 x+5 x^2+(-50-10 x) \log (8)+5 \log ^2(8)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 x+5 x^2+(-50-10 x) \log (8)+e^{\frac {-6-e^5-6 x-x^2}{-25-5 x+5 \log (8)}} \left (24-e^5+10 x+x^2+(-6-2 x) \log (8)\right )+125 \left (1+\frac {\log ^2(8)}{25}\right )}{5 x^2+10 x (5-\log (8))+5 (5-\log (8))^2} \, dx\\ &=\int \frac {50 x+5 x^2+(-50-10 x) \log (8)+e^{\frac {-6-e^5-6 x-x^2}{-25-5 x+5 \log (8)}} \left (24-e^5+10 x+x^2+(-6-2 x) \log (8)\right )+125 \left (1+\frac {\log ^2(8)}{25}\right )}{5 (5+x-\log (8))^2} \, dx\\ &=\frac {1}{5} \int \frac {50 x+5 x^2+(-50-10 x) \log (8)+e^{\frac {-6-e^5-6 x-x^2}{-25-5 x+5 \log (8)}} \left (24-e^5+10 x+x^2+(-6-2 x) \log (8)\right )+125 \left (1+\frac {\log ^2(8)}{25}\right )}{(5+x-\log (8))^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {50 x}{(5+x-\log (8))^2}+\frac {5 x^2}{(5+x-\log (8))^2}+\frac {e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}} \left (24-e^5+x^2+2 x (5-\log (8))-6 \log (8)\right )}{(5+x-\log (8))^2}-\frac {10 (5+x) \log (8)}{(5+x-\log (8))^2}+\frac {5 \left (25+\log ^2(8)\right )}{(5+x-\log (8))^2}\right ) \, dx\\ &=-\frac {25+\log ^2(8)}{5+x-\log (8)}+\frac {1}{5} \int \frac {e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}} \left (24-e^5+x^2+2 x (5-\log (8))-6 \log (8)\right )}{(5+x-\log (8))^2} \, dx+10 \int \frac {x}{(5+x-\log (8))^2} \, dx-(2 \log (8)) \int \frac {5+x}{(5+x-\log (8))^2} \, dx+\int \frac {x^2}{(5+x-\log (8))^2} \, dx\\ &=-\frac {25+\log ^2(8)}{5+x-\log (8)}+\frac {1}{5} \int \left (e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}}+\frac {e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}} \left (-1-e^5+4 \log (8)-\log ^2(8)\right )}{(5+x-\log (8))^2}\right ) \, dx+10 \int \left (\frac {1}{5+x-\log (8)}+\frac {-5+\log (8)}{(5+x-\log (8))^2}\right ) \, dx-(2 \log (8)) \int \left (\frac {1}{5+x-\log (8)}+\frac {\log (8)}{(5+x-\log (8))^2}\right ) \, dx+\int \left (1+\frac {2 (-5+\log (8))}{5+x-\log (8)}+\frac {(-5+\log (8))^2}{(5+x-\log (8))^2}\right ) \, dx\\ &=x+\frac {10 (5-\log (8))}{5+x-\log (8)}-\frac {(5-\log (8))^2}{5+x-\log (8)}+\frac {2 \log ^2(8)}{5+x-\log (8)}-\frac {25+\log ^2(8)}{5+x-\log (8)}+10 \log (5+x-\log (8))-2 (5-\log (8)) \log (5+x-\log (8))-2 \log (8) \log (5+x-\log (8))+\frac {1}{5} \int e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}} \, dx+\frac {1}{5} \left (-1-e^5+4 \log (8)-\log ^2(8)\right ) \int \frac {e^{\frac {6+e^5+6 x+x^2}{5 (5+x-\log (8))}}}{(5+x-\log (8))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.38, size = 63, normalized size = 2.25 \begin {gather*} \frac {1}{5} \left (5\ 2^{-\frac {3 \log (8)}{5 (5+x-\log (8))}} e^{\frac {6+e^5+6 x+x^2+\log ^2(8)}{5 (5+x-\log (8))}}+5 (5+x-\log (8))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 24, normalized size = 0.86 \begin {gather*} x + e^{\left (\frac {x^{2} + 6 \, x + e^{5} + 6}{5 \, {\left (x - 3 \, \log \relax (2) + 5\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 67, normalized size = 2.39 \begin {gather*} x + e^{\left (\frac {3 \, x^{2} \log \relax (2) - 5 \, x^{2} + x e^{5} + 18 \, x \log \relax (2) - 24 \, x}{5 \, {\left (3 \, x \log \relax (2) - 9 \, \log \relax (2)^{2} - 5 \, x + 30 \, \log \relax (2) - 25\right )}} - \frac {e^{5} + 6}{5 \, {\left (3 \, \log \relax (2) - 5\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 27, normalized size = 0.96
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {x^{2}+{\mathrm e}^{5}+6 x +6}{5 \left (3 \ln \relax (2)-x -5\right )}}\) | \(27\) |
norman | \(\frac {\left (3 \ln \relax (2)-5\right ) {\mathrm e}^{\frac {-{\mathrm e}^{5}-x^{2}-6 x -6}{15 \ln \relax (2)-5 x -25}}-x^{2}-x \,{\mathrm e}^{\frac {-{\mathrm e}^{5}-x^{2}-6 x -6}{15 \ln \relax (2)-5 x -25}}+9 \ln \relax (2)^{2}-30 \ln \relax (2)+25}{3 \ln \relax (2)-x -5}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 200, normalized size = 7.14 \begin {gather*} 6 \, {\left (\frac {3 \, \log \relax (2) - 5}{x - 3 \, \log \relax (2) + 5} - \log \left (x - 3 \, \log \relax (2) + 5\right )\right )} \log \relax (2) + 2 \, {\left (3 \, \log \relax (2) - 5\right )} \log \left (x - 3 \, \log \relax (2) + 5\right ) + 2^{\frac {3}{5}} e^{\left (\frac {1}{5} \, x + \frac {9 \, \log \relax (2)^{2}}{5 \, {\left (x - 3 \, \log \relax (2) + 5\right )}} + \frac {e^{5}}{5 \, {\left (x - 3 \, \log \relax (2) + 5\right )}} - \frac {12 \, \log \relax (2)}{5 \, {\left (x - 3 \, \log \relax (2) + 5\right )}} + \frac {1}{5 \, {\left (x - 3 \, \log \relax (2) + 5\right )}} + \frac {1}{5}\right )} + x - \frac {9 \, \log \relax (2)^{2}}{x - 3 \, \log \relax (2) + 5} - \frac {9 \, \log \relax (2)^{2} - 30 \, \log \relax (2) + 25}{x - 3 \, \log \relax (2) + 5} - \frac {10 \, {\left (3 \, \log \relax (2) - 5\right )}}{x - 3 \, \log \relax (2) + 5} + \frac {30 \, \log \relax (2)}{x - 3 \, \log \relax (2) + 5} - \frac {25}{x - 3 \, \log \relax (2) + 5} + 10 \, \log \left (x - 3 \, \log \relax (2) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {50\,x-3\,\ln \relax (2)\,\left (10\,x+50\right )+45\,{\ln \relax (2)}^2+{\mathrm {e}}^{\frac {x^2+6\,x+{\mathrm {e}}^5+6}{5\,x-15\,\ln \relax (2)+25}}\,\left (10\,x-{\mathrm {e}}^5-3\,\ln \relax (2)\,\left (2\,x+6\right )+x^2+24\right )+5\,x^2+125}{50\,x-3\,\ln \relax (2)\,\left (10\,x+50\right )+45\,{\ln \relax (2)}^2+5\,x^2+125} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 26, normalized size = 0.93 \begin {gather*} x + e^{\frac {- x^{2} - 6 x - e^{5} - 6}{- 5 x - 25 + 15 \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________