Optimal. Leaf size=22 \[ \frac {5}{\log \left (\frac {3}{1-x-\frac {10}{3} \log (10+e)}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {12, 2390, 2302, 30} \begin {gather*} \frac {5}{\log \left (\frac {9}{-3 x+3-10 \log (10+e)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=15 \int \frac {1}{(-3+3 x+10 \log (10+e)) \log ^2\left (-\frac {9}{-3+3 x+10 \log (10+e)}\right )} \, dx\\ &=5 \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (-\frac {9}{x}\right )} \, dx,x,-3+3 x+10 \log (10+e)\right )\\ &=-\left (5 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (-\frac {9}{-3+3 x+10 \log (10+e)}\right )\right )\right )\\ &=\frac {5}{\log \left (\frac {9}{3-3 x-10 \log (10+e)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.91 \begin {gather*} \frac {5}{\log \left (-\frac {9}{-3+3 x+10 \log (10+e)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 21, normalized size = 0.95 \begin {gather*} \frac {5}{\log \left (-\frac {9}{3 \, x + 10 \, \log \left (e + 10\right ) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 0.95 \begin {gather*} \frac {5}{\log \left (-\frac {9}{3 \, x + 10 \, \log \left (e + 10\right ) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 1.00
method | result | size |
derivativedivides | \(\frac {5}{\ln \left (-\frac {9}{10 \ln \left (10+{\mathrm e}\right )+3 x -3}\right )}\) | \(22\) |
default | \(\frac {5}{\ln \left (-\frac {9}{10 \ln \left (10+{\mathrm e}\right )+3 x -3}\right )}\) | \(22\) |
norman | \(\frac {5}{\ln \left (-\frac {9}{10 \ln \left (10+{\mathrm e}\right )+3 x -3}\right )}\) | \(22\) |
risch | \(\frac {5}{\ln \left (-\frac {9}{10 \ln \left (10+{\mathrm e}\right )+3 x -3}\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 21, normalized size = 0.95 \begin {gather*} \frac {5}{\log \left (-\frac {9}{3 \, x + 10 \, \log \left (e + 10\right ) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 21, normalized size = 0.95 \begin {gather*} \frac {5}{\ln \left (-\frac {9}{3\,x+10\,\ln \left (\mathrm {e}+10\right )-3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.86 \begin {gather*} \frac {5}{\log {\left (- \frac {9}{3 x - 3 + 10 \log {\left (e + 10 \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________