Optimal. Leaf size=29 \[ 4 \left (x-x^2+e^4 (-3+\log (x))-\log \left (\frac {1}{2} (2+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 22, normalized size of antiderivative = 0.76, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {1593, 1620} \begin {gather*} -4 x^2+4 x+4 e^4 \log (x)-8 \log (x+2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12 x^2-8 x^3+e^4 (8+4 x)}{x (2+x)} \, dx\\ &=\int \left (4+\frac {4 e^4}{x}-8 x-\frac {8}{2+x}\right ) \, dx\\ &=4 x-4 x^2+4 e^4 \log (x)-8 \log (2+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 0.90 \begin {gather*} 20 (2+x)-4 (2+x)^2+4 e^4 \log (x)-8 \log (2+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 21, normalized size = 0.72 \begin {gather*} -4 \, x^{2} + 4 \, e^{4} \log \relax (x) + 4 \, x - 8 \, \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 23, normalized size = 0.79 \begin {gather*} -4 \, x^{2} + 4 \, e^{4} \log \left ({\left | x \right |}\right ) + 4 \, x - 8 \, \log \left ({\left | x + 2 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 22, normalized size = 0.76
method | result | size |
default | \(4 x -4 x^{2}-8 \ln \left (2+x \right )+4 \,{\mathrm e}^{4} \ln \relax (x )\) | \(22\) |
norman | \(4 x -4 x^{2}-8 \ln \left (2+x \right )+4 \,{\mathrm e}^{4} \ln \relax (x )\) | \(22\) |
risch | \(-4 x^{2}+4 x +4 \,{\mathrm e}^{4} \ln \left (-x \right )-8 \ln \left (2+x \right )\) | \(24\) |
meijerg | \(4 \,{\mathrm e}^{4} \ln \left (1+\frac {x}{2}\right )+4 \,{\mathrm e}^{4} \left (-\ln \left (1+\frac {x}{2}\right )+\ln \relax (x )-\ln \relax (2)\right )+\frac {8 x \left (-\frac {3 x}{2}+6\right )}{3}-8 \ln \left (1+\frac {x}{2}\right )-12 x\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 21, normalized size = 0.72 \begin {gather*} -4 \, x^{2} + 4 \, e^{4} \log \relax (x) + 4 \, x - 8 \, \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.25, size = 21, normalized size = 0.72 \begin {gather*} 4\,x-8\,\ln \left (x+2\right )+4\,{\mathrm {e}}^4\,\ln \relax (x)-4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 34, normalized size = 1.17 \begin {gather*} - 4 x^{2} + 4 x + 4 e^{4} \log {\relax (x )} - 8 \log {\left (x + \frac {8 + 4 e^{4}}{4 + 2 e^{4}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________