Optimal. Leaf size=25 \[ x+\frac {64 \left (-4+8 e^2\right )^2 x^4}{\left (1-e^4\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6, 12} \begin {gather*} \frac {1024 \left (1-2 e^2\right )^2 x^4}{\left (1-e^4\right )^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-2 e^4+e^8+16384 e^4 x^3+\left (4096-16384 e^2\right ) x^3}{1-2 e^4+e^8} \, dx\\ &=\int \frac {1-2 e^4+e^8+\left (4096-16384 e^2+16384 e^4\right ) x^3}{1-2 e^4+e^8} \, dx\\ &=\frac {\int \left (1-2 e^4+e^8+\left (4096-16384 e^2+16384 e^4\right ) x^3\right ) \, dx}{1-2 e^4+e^8}\\ &=x+\frac {1024 \left (1-2 e^2\right )^2 x^4}{\left (1-e^4\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 42, normalized size = 1.68 \begin {gather*} \frac {x-2 e^4 x+e^8 x+1024 x^4-4096 e^2 x^4+4096 e^4 x^4}{\left (-1+e^4\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 46, normalized size = 1.84 \begin {gather*} -\frac {4096 \, x^{4} e^{2} - 1024 \, x^{4} - x e^{8} - 2 \, {\left (2048 \, x^{4} - x\right )} e^{4} - x}{e^{8} - 2 \, e^{4} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 41, normalized size = 1.64 \begin {gather*} \frac {4096 \, x^{4} e^{4} - 4096 \, x^{4} e^{2} + 1024 \, x^{4} + x e^{8} - 2 \, x e^{4} + x}{e^{8} - 2 \, e^{4} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 38, normalized size = 1.52
method | result | size |
norman | \(\frac {\left ({\mathrm e}^{4}-1\right ) x +\frac {1024 \left (4 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2}+1\right ) x^{4}}{{\mathrm e}^{4}-1}}{{\mathrm e}^{4}-1}\) | \(38\) |
gosper | \(\frac {x \left (4096 x^{3} {\mathrm e}^{4}-4096 x^{3} {\mathrm e}^{2}+1024 x^{3}+{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1\right )}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}\) | \(46\) |
default | \(\frac {x \,{\mathrm e}^{8}-2 x \,{\mathrm e}^{4}+4096 x^{4} {\mathrm e}^{4}-4096 x^{4} {\mathrm e}^{2}+1024 x^{4}+x}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}\) | \(48\) |
risch | \(\frac {4096 x^{4} {\mathrm e}^{4}}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}+\frac {x \,{\mathrm e}^{8}}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}-\frac {4096 x^{4} {\mathrm e}^{2}}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}+\frac {1024 x^{4}}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}-\frac {2 x \,{\mathrm e}^{4}}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}+\frac {x}{{\mathrm e}^{8}-2 \,{\mathrm e}^{4}+1}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 41, normalized size = 1.64 \begin {gather*} \frac {4096 \, x^{4} e^{4} - 4096 \, x^{4} e^{2} + 1024 \, x^{4} + x e^{8} - 2 \, x e^{4} + x}{e^{8} - 2 \, e^{4} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 21, normalized size = 0.84 \begin {gather*} \frac {1024\,{\left (2\,{\mathrm {e}}^2-1\right )}^2\,x^4}{{\left ({\mathrm {e}}^4-1\right )}^2}+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 26, normalized size = 1.04 \begin {gather*} \frac {x^{4} \left (- 4096 e^{2} + 1024 + 4096 e^{4}\right )}{- 2 e^{4} + 1 + e^{8}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________