Optimal. Leaf size=29 \[ \left (-4+e^3\right ) (i \pi +\log (10)) \log \left (x+\frac {e^x}{\log \left (\frac {5}{x^2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-8+2 e^3\right ) (i \pi +\log (10))+e^x \left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log \left (\frac {5}{x^2}\right )+\left (-4 x+e^3 x\right ) (i \pi +\log (10)) \log ^2\left (\frac {5}{x^2}\right )}{e^x x \log \left (\frac {5}{x^2}\right )+x^2 \log ^2\left (\frac {5}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4-e^3\right ) (i \pi +\log (10)) \left (-2 e^x-e^x x \log \left (\frac {5}{x^2}\right )-x \log ^2\left (\frac {5}{x^2}\right )\right )}{x \log \left (\frac {5}{x^2}\right ) \left (e^x+x \log \left (\frac {5}{x^2}\right )\right )} \, dx\\ &=\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {-2 e^x-e^x x \log \left (\frac {5}{x^2}\right )-x \log ^2\left (\frac {5}{x^2}\right )}{x \log \left (\frac {5}{x^2}\right ) \left (e^x+x \log \left (\frac {5}{x^2}\right )\right )} \, dx\\ &=\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \left (\frac {-2-x \log \left (\frac {5}{x^2}\right )}{x \log \left (\frac {5}{x^2}\right )}+\frac {2-\log \left (\frac {5}{x^2}\right )+x \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )}\right ) \, dx\\ &=\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {-2-x \log \left (\frac {5}{x^2}\right )}{x \log \left (\frac {5}{x^2}\right )} \, dx+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {2-\log \left (\frac {5}{x^2}\right )+x \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx\\ &=\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \left (-1-\frac {2}{x \log \left (\frac {5}{x^2}\right )}\right ) \, dx+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {2+(-1+x) \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx\\ &=-\left (\left (4-e^3\right ) x (i \pi +\log (10))\right )+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \left (\frac {2}{e^x+x \log \left (\frac {5}{x^2}\right )}-\frac {\log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )}+\frac {x \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )}\right ) \, dx-\left (2 \left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {1}{x \log \left (\frac {5}{x^2}\right )} \, dx\\ &=-\left (\left (4-e^3\right ) x (i \pi +\log (10))\right )-\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {\log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {x \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {5}{x^2}\right )\right )+\left (2 \left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {1}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx\\ &=-\left (\left (4-e^3\right ) x (i \pi +\log (10))\right )+\left (4-e^3\right ) (i \pi +\log (10)) \log \left (\log \left (\frac {5}{x^2}\right )\right )-\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {\log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx+\left (\left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {x \log \left (\frac {5}{x^2}\right )}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx+\left (2 \left (4-e^3\right ) (i \pi +\log (10))\right ) \int \frac {1}{e^x+x \log \left (\frac {5}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 37, normalized size = 1.28 \begin {gather*} \left (-4+e^3\right ) (i \pi +\log (10)) \left (-\log \left (\log \left (\frac {5}{x^2}\right )\right )+\log \left (e^x+x \log \left (\frac {5}{x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 86, normalized size = 2.97 \begin {gather*} -{\left (4 i \, \pi - i \, \pi e^{3} - {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\frac {x \log \left (\frac {5}{x^{2}}\right ) + e^{x}}{x}\right ) + \frac {1}{2} \, {\left (4 i \, \pi - i \, \pi e^{3} - {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\frac {5}{x^{2}}\right ) - {\left (-4 i \, \pi + i \, \pi e^{3} + {\left (e^{3} - 4\right )} \log \left (10\right )\right )} \log \left (\log \left (\frac {5}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 205, normalized size = 7.07 \begin {gather*} i \, \pi e^{3} \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) + e^{3} \log \relax (5) \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) + e^{3} \log \relax (2) \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) - i \, \pi e^{3} \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) - e^{3} \log \relax (5) \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) - e^{3} \log \relax (2) \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) - 4 i \, \pi \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) - 4 \, \log \relax (5) \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) - 4 \, \log \relax (2) \log \left (x \log \relax (5) - x \log \left (x^{2}\right ) + e^{x}\right ) + 4 i \, \pi \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) + 4 \, \log \relax (5) \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) + 4 \, \log \relax (2) \log \left (\log \relax (5) - \log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.71, size = 64, normalized size = 2.21
method | result | size |
norman | \(\left (-i \pi \,{\mathrm e}^{3}+4 i \pi -{\mathrm e}^{3} \ln \left (10\right )+4 \ln \left (10\right )\right ) \ln \left (\ln \left (\frac {5}{x^{2}}\right )\right )+\left (i \pi \,{\mathrm e}^{3}-4 i \pi +{\mathrm e}^{3} \ln \left (10\right )-4 \ln \left (10\right )\right ) \ln \left (x \ln \left (\frac {5}{x^{2}}\right )+{\mathrm e}^{x}\right )\) | \(64\) |
default | \(-i \pi \ln \left (-\ln \left (\frac {5}{x^{2}}\right )\right ) {\mathrm e}^{3}+4 i \pi \ln \left (-\ln \left (\frac {5}{x^{2}}\right )\right )-\ln \left (-\ln \left (\frac {5}{x^{2}}\right )\right ) {\mathrm e}^{3} \ln \left (10\right )+4 \ln \left (-\ln \left (\frac {5}{x^{2}}\right )\right ) \ln \left (10\right )+i \pi \ln \left (2 x \ln \relax (x )-x \left (\ln \left (\frac {5}{x^{2}}\right )+2 \ln \relax (x )\right )-{\mathrm e}^{x}\right ) {\mathrm e}^{3}-4 i \pi \ln \left (2 x \ln \relax (x )-x \left (\ln \left (\frac {5}{x^{2}}\right )+2 \ln \relax (x )\right )-{\mathrm e}^{x}\right )+\ln \left (2 x \ln \relax (x )-x \left (\ln \left (\frac {5}{x^{2}}\right )+2 \ln \relax (x )\right )-{\mathrm e}^{x}\right ) {\mathrm e}^{3} \ln \left (10\right )-4 \ln \left (2 x \ln \relax (x )-x \left (\ln \left (\frac {5}{x^{2}}\right )+2 \ln \relax (x )\right )-{\mathrm e}^{x}\right ) \ln \left (10\right )\) | \(177\) |
risch | \(\ln \relax (x ) \ln \relax (5) {\mathrm e}^{3}+\ln \relax (x ) {\mathrm e}^{3} \ln \relax (2)-4 i \pi \ln \relax (x )-4 \ln \relax (5) \ln \relax (x )-4 \ln \relax (2) \ln \relax (x )+i \pi \ln \relax (x ) {\mathrm e}^{3}+i \pi \,{\mathrm e}^{3} \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )+4 i \pi \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )+\ln \relax (5) {\mathrm e}^{3} \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )+{\mathrm e}^{3} \ln \relax (2) \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )-4 \ln \relax (5) \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )-4 \ln \relax (2) \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )-4 i \pi \ln \left (\ln \relax (x )-\frac {i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5) x -2 i {\mathrm e}^{x}\right )}{4 x}\right )-i \pi \,{\mathrm e}^{3} \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )-\ln \relax (5) {\mathrm e}^{3} \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )-{\mathrm e}^{3} \ln \relax (2) \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )+4 \ln \relax (5) \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )+4 \ln \relax (2) \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (5)\right )}{4}\right )\) | \(856\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 74, normalized size = 2.55 \begin {gather*} {\left (-4 i \, \pi + {\left (i \, \pi + \log \relax (5) + \log \relax (2)\right )} e^{3} - 4 \, \log \relax (5) - 4 \, \log \relax (2)\right )} \log \left (x \log \relax (5) - 2 \, x \log \relax (x) + e^{x}\right ) + {\left (4 i \, \pi + {\left (-i \, \pi - \log \relax (5) - \log \relax (2)\right )} e^{3} + 4 \, \log \relax (5) + 4 \, \log \relax (2)\right )} \log \left (-\frac {1}{2} \, \log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 35, normalized size = 1.21 \begin {gather*} -\left (\ln \left (10\right )+\Pi \,1{}\mathrm {i}\right )\,\left ({\mathrm {e}}^3-4\right )\,\left (\ln \left (\ln \left (\frac {5}{x^2}\right )\right )-\ln \left ({\mathrm {e}}^x+x\,\ln \left (\frac {5}{x^2}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.08, size = 53, normalized size = 1.83 \begin {gather*} - \left (-4 + e^{3}\right ) \left (\log {\left (10 \right )} + i \pi \right ) \log {\left (\log {\left (\frac {1}{x^{2}} \right )} + \log {\relax (5 )} \right )} + \left (-4 + e^{3}\right ) \left (\log {\left (10 \right )} + i \pi \right ) \log {\left (x \log {\left (\frac {1}{x^{2}} \right )} + x \log {\relax (5 )} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________