Optimal. Leaf size=19 \[ \frac {1}{4-e+\frac {x}{\log ^2\left (\frac {2 x}{\log (3)}\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 4, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6688, 2547, 6711, 32} \begin {gather*} \frac {1}{\frac {x}{\log ^2\left (\frac {2 x}{\log (3)}\right )}-e+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 32
Rule 2547
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (2-\log \left (\frac {2 x}{\log (3)}\right )\right ) \log \left (\frac {2 x}{\log (3)}\right )}{\left (x-(-4+e) \log ^2\left (\frac {2 x}{\log (3)}\right )\right )^2} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {1}{(4-e+x)^2} \, dx,x,\frac {x}{\log ^2\left (\frac {2 x}{\log (3)}\right )}\right )\\ &=\frac {1}{4-e+\frac {x}{\log ^2\left (\frac {2 x}{\log (3)}\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 28, normalized size = 1.47 \begin {gather*} -\frac {x}{(-4+e) \left (-x+(-4+e) \log ^2\left (\frac {2 x}{\log (3)}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 33, normalized size = 1.74 \begin {gather*} -\frac {x}{{\left (e^{2} - 8 \, e + 16\right )} \log \left (\frac {2 \, x}{\log \relax (3)}\right )^{2} - x e + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 96, normalized size = 5.05 \begin {gather*} -\frac {x}{e^{2} \log \left (2 \, x\right )^{2} - 8 \, e \log \left (2 \, x\right )^{2} - 2 \, e^{2} \log \left (2 \, x\right ) \log \left (\log \relax (3)\right ) + 16 \, e \log \left (2 \, x\right ) \log \left (\log \relax (3)\right ) + e^{2} \log \left (\log \relax (3)\right )^{2} - 8 \, e \log \left (\log \relax (3)\right )^{2} - x e + 16 \, \log \left (2 \, x\right )^{2} - 32 \, \log \left (2 \, x\right ) \log \left (\log \relax (3)\right ) + 16 \, \log \left (\log \relax (3)\right )^{2} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 41, normalized size = 2.16
method | result | size |
risch | \(-\frac {x}{\left ({\mathrm e}-4\right ) \left ({\mathrm e} \ln \left (\frac {2 x}{\ln \relax (3)}\right )^{2}-4 \ln \left (\frac {2 x}{\ln \relax (3)}\right )^{2}-x \right )}\) | \(41\) |
norman | \(-\frac {\ln \left (\frac {2 x}{\ln \relax (3)}\right )^{2}}{{\mathrm e} \ln \left (\frac {2 x}{\ln \relax (3)}\right )^{2}-4 \ln \left (\frac {2 x}{\ln \relax (3)}\right )^{2}-x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 124, normalized size = 6.53 \begin {gather*} -\frac {x}{{\left (e^{2} - 8 \, e + 16\right )} \log \relax (x)^{2} - x {\left (e - 4\right )} + {\left (\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{2}\right )} e^{2} - 8 \, {\left (\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{2}\right )} e + 16 \, \log \relax (2)^{2} + 2 \, {\left ({\left (\log \relax (2) - \log \left (\log \relax (3)\right )\right )} e^{2} - 8 \, {\left (\log \relax (2) - \log \left (\log \relax (3)\right )\right )} e + 16 \, \log \relax (2) - 16 \, \log \left (\log \relax (3)\right )\right )} \log \relax (x) - 32 \, \log \relax (2) \log \left (\log \relax (3)\right ) + 16 \, \log \left (\log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.85, size = 38, normalized size = 2.00 \begin {gather*} \frac {x}{\left (\mathrm {e}-4\right )\,\left (x-{\ln \left (\frac {2\,x}{\ln \relax (3)}\right )}^2\,\mathrm {e}+4\,{\ln \left (\frac {2\,x}{\ln \relax (3)}\right )}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 31, normalized size = 1.63 \begin {gather*} - \frac {x}{- e x + 4 x + \left (- 8 e + e^{2} + 16\right ) \log {\left (\frac {2 x}{\log {\relax (3 )}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________