Optimal. Leaf size=32 \[ \frac {25}{1-e^{-2+2 e^{\sqrt [4]{e}}-e^{x^2}-x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 8.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25+e^{-2+2 e^{\sqrt [4]{e}}-e^{x^2}-x} \left (-25-50 e^{x^2} x\right )}{1+e^{-4+4 e^{\sqrt [4]{e}}-2 e^{x^2}-2 x}+e^{-2+2 e^{\sqrt [4]{e}}-e^{x^2}-x} (-2-2 x)+2 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 \left (2+e^{x^2}+x\right )} \left (-25+e^{-2+2 e^{\sqrt [4]{e}}-e^{x^2}-x} \left (-25-50 e^{x^2} x\right )\right )}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2} \, dx\\ &=\int \left (-\frac {50 \exp \left (-e^{x^2}-2 \left (1-e^{\sqrt [4]{e}}\right )-x+x^2+2 \left (2+e^{x^2}+x\right )\right ) x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2}-\frac {25 e^{-2-e^{x^2}-x+2 \left (2+e^{x^2}+x\right )} \left (e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}\right )}{\left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )^2}\right ) \, dx\\ &=-\left (25 \int \frac {e^{-2-e^{x^2}-x+2 \left (2+e^{x^2}+x\right )} \left (e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}\right )}{\left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )^2} \, dx\right )-50 \int \frac {\exp \left (-e^{x^2}-2 \left (1-e^{\sqrt [4]{e}}\right )-x+x^2+2 \left (2+e^{x^2}+x\right )\right ) x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{2+e^{x^2}+x} \left (e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}\right )}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\right )-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \left (\frac {e^{2+2 e^{\sqrt [4]{e}}+e^{x^2}+x} (2+x)}{(1+x) \left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2}+\frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )}\right ) \, dx\right )-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{2+2 e^{\sqrt [4]{e}}+e^{x^2}+x} (2+x)}{(1+x) \left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2} \, dx\right )-25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x} (2+x)}{(1+x) \left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2} \, dx\right )-25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx\right )-25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x} (2+x)}{(1+x) \left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx\right )-25 \int \left (\frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2}+\frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )^2}\right ) \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x}-e^{2+e^{x^2}+x} x\right )^2} \, dx\right )-25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )^2} \, dx-25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )^2} \, dx\right )-25 \int \frac {e^{2+e^{x^2}+x}}{(1+x) \left (-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x}+e^{2+e^{x^2}+x} x\right )} \, dx-25 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x}}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx-50 \int \frac {e^{e^{x^2}+2 \left (1+e^{\sqrt [4]{e}}\right )+x+x^2} x}{\left (e^{2 e^{\sqrt [4]{e}}}-e^{2+e^{x^2}+x} (1+x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 42, normalized size = 1.31 \begin {gather*} \frac {25 e^{2+e^{x^2}+x}}{-e^{2 e^{\sqrt [4]{e}}}+e^{2+e^{x^2}+x} (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 26, normalized size = 0.81 \begin {gather*} \frac {25}{x - e^{\left (-x - e^{\left (x^{2}\right )} + 2 \, e^{\left (e^{\frac {1}{4}}\right )} - 2\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 26, normalized size = 0.81 \begin {gather*} \frac {25}{x - e^{\left (-x - e^{\left (x^{2}\right )} + 2 \, e^{\left (e^{\frac {1}{4}}\right )} - 2\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 27, normalized size = 0.84
method | result | size |
norman | \(\frac {25}{x +1-{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}^{\frac {1}{4}}}-{\mathrm e}^{x^{2}}-x -2}}\) | \(27\) |
risch | \(\frac {25}{x +1-{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}^{\frac {1}{4}}}-{\mathrm e}^{x^{2}}-x -2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 36, normalized size = 1.12 \begin {gather*} \frac {25 \, e^{\left (x + e^{\left (x^{2}\right )} + 2\right )}}{{\left (x e^{2} + e^{2}\right )} e^{\left (x + e^{\left (x^{2}\right )}\right )} - e^{\left (2 \, e^{\left (e^{\frac {1}{4}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 28, normalized size = 0.88 \begin {gather*} \frac {25}{x-{\mathrm {e}}^{-{\mathrm {e}}^{x^2}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{{\mathrm {e}}^{1/4}}}+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 0.75 \begin {gather*} - \frac {25}{- x + e^{- x - e^{x^{2}} - 2 + 2 e^{e^{\frac {1}{4}}}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________