Optimal. Leaf size=35 \[ 2 \left (2-\frac {\frac {1}{2} e^{-e^x+\frac {x}{5}}-e^x}{2 x}\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 24, normalized size of antiderivative = 0.69, number of steps used = 4, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {12, 2194, 6706} \begin {gather*} 4 x+e^x-\frac {1}{2} e^{\frac {1}{5} \left (x-5 e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \left (40+10 e^x+e^{\frac {1}{5} \left (-5 e^x+x\right )} \left (-1+5 e^x\right )\right ) \, dx\\ &=4 x+\frac {1}{10} \int e^{\frac {1}{5} \left (-5 e^x+x\right )} \left (-1+5 e^x\right ) \, dx+\int e^x \, dx\\ &=e^x-\frac {1}{2} e^{\frac {1}{5} \left (-5 e^x+x\right )}+4 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.06, size = 57, normalized size = 1.63 \begin {gather*} e^x+4 x+\frac {1}{10} e^{-4 x/5} \left (e^x\right )^{4/5} \Gamma \left (\frac {1}{5},e^x\right )-\frac {1}{2} e^{-4 x/5} \left (e^x\right )^{4/5} \Gamma \left (\frac {6}{5},e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 17, normalized size = 0.49 \begin {gather*} 4 \, x + e^{x} - \frac {1}{2} \, e^{\left (\frac {1}{5} \, x - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.49 \begin {gather*} 4 \, x + e^{x} - \frac {1}{2} \, e^{\left (\frac {1}{5} \, x - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.51
method | result | size |
default | \(4 x -\frac {{\mathrm e}^{\frac {x}{5}-{\mathrm e}^{x}}}{2}+{\mathrm e}^{x}\) | \(18\) |
norman | \(4 x -\frac {{\mathrm e}^{\frac {x}{5}-{\mathrm e}^{x}}}{2}+{\mathrm e}^{x}\) | \(18\) |
risch | \(4 x -\frac {{\mathrm e}^{\frac {x}{5}-{\mathrm e}^{x}}}{2}+{\mathrm e}^{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.33, size = 17, normalized size = 0.49 \begin {gather*} 4 \, x + e^{x} - \frac {1}{2} \, e^{\left (\frac {1}{5} \, x - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.49 \begin {gather*} 4\,x-\frac {{\mathrm {e}}^{\frac {x}{5}-{\mathrm {e}}^x}}{2}+{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.43 \begin {gather*} 4 x + e^{x} - \frac {e^{\frac {x}{5} - e^{x}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________