Optimal. Leaf size=28 \[ \frac {e^x \left (2 x-\left (16+e^5\right ) x\right )}{-1+(5-x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (84+6 e^5\right )+e^x \left (-70-70 x+14 x^2+e^5 \left (-5-5 x+x^2\right )\right ) \log (x)}{1+(-10+2 x) \log (x)+\left (25-10 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (14+e^5\right ) \left (6+\left (-5-5 x+x^2\right ) \log (x)\right )}{(1+(-5+x) \log (x))^2} \, dx\\ &=\left (14+e^5\right ) \int \frac {e^x \left (6+\left (-5-5 x+x^2\right ) \log (x)\right )}{(1+(-5+x) \log (x))^2} \, dx\\ &=\left (14+e^5\right ) \int \left (\frac {e^x \left (-25+11 x-x^2\right )}{(-5+x) (1-5 \log (x)+x \log (x))^2}+\frac {e^x \left (-5-5 x+x^2\right )}{(-5+x) (1-5 \log (x)+x \log (x))}\right ) \, dx\\ &=\left (14+e^5\right ) \int \frac {e^x \left (-25+11 x-x^2\right )}{(-5+x) (1-5 \log (x)+x \log (x))^2} \, dx+\left (14+e^5\right ) \int \frac {e^x \left (-5-5 x+x^2\right )}{(-5+x) (1-5 \log (x)+x \log (x))} \, dx\\ &=\left (14+e^5\right ) \int \left (\frac {6 e^x}{(1-5 \log (x)+x \log (x))^2}+\frac {5 e^x}{(-5+x) (1-5 \log (x)+x \log (x))^2}-\frac {e^x x}{(1-5 \log (x)+x \log (x))^2}\right ) \, dx+\left (14+e^5\right ) \int \left (-\frac {5 e^x}{(-5+x) (1-5 \log (x)+x \log (x))}+\frac {e^x x}{1-5 \log (x)+x \log (x)}\right ) \, dx\\ &=\left (-14-e^5\right ) \int \frac {e^x x}{(1-5 \log (x)+x \log (x))^2} \, dx+\left (14+e^5\right ) \int \frac {e^x x}{1-5 \log (x)+x \log (x)} \, dx+\left (5 \left (14+e^5\right )\right ) \int \frac {e^x}{(-5+x) (1-5 \log (x)+x \log (x))^2} \, dx-\left (5 \left (14+e^5\right )\right ) \int \frac {e^x}{(-5+x) (1-5 \log (x)+x \log (x))} \, dx+\left (6 \left (14+e^5\right )\right ) \int \frac {e^x}{(1-5 \log (x)+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 0.79 \begin {gather*} \frac {e^x \left (14+e^5\right ) x}{1-5 \log (x)+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 21, normalized size = 0.75 \begin {gather*} \frac {{\left (x e^{5} + 14 \, x\right )} e^{x}}{{\left (x - 5\right )} \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 0.89 \begin {gather*} \frac {x e^{\left (x + 5\right )} + 14 \, x e^{x}}{x \log \relax (x) - 5 \, \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 21, normalized size = 0.75
method | result | size |
norman | \(\frac {\left ({\mathrm e}^{5}+14\right ) x \,{\mathrm e}^{x}}{x \ln \relax (x )-5 \ln \relax (x )+1}\) | \(21\) |
risch | \(\frac {\left ({\mathrm e}^{5}+14\right ) x \,{\mathrm e}^{x}}{x \ln \relax (x )-5 \ln \relax (x )+1}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 18, normalized size = 0.64 \begin {gather*} \frac {x {\left (e^{5} + 14\right )} e^{x}}{{\left (x - 5\right )} \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (6\,{\mathrm {e}}^5+84\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (70\,x+{\mathrm {e}}^5\,\left (-x^2+5\,x+5\right )-14\,x^2+70\right )}{\left (x^2-10\,x+25\right )\,{\ln \relax (x)}^2+\left (2\,x-10\right )\,\ln \relax (x)+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 22, normalized size = 0.79 \begin {gather*} \frac {\left (14 x + x e^{5}\right ) e^{x}}{x \log {\relax (x )} - 5 \log {\relax (x )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________