Optimal. Leaf size=21 \[ \frac {\log (-x (-1+2 x))}{-3 e^5-x} \]
________________________________________________________________________________________
Rubi [B] time = 0.76, antiderivative size = 232, normalized size of antiderivative = 11.05, number of steps used = 16, number of rules used = 9, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6688, 6742, 44, 77, 148, 2495, 36, 31, 29} \begin {gather*} -\frac {1+12 e^5}{\left (1+6 e^5\right ) \left (x+3 e^5\right )}+\frac {12 e^5}{\left (1+6 e^5\right ) \left (x+3 e^5\right )}+\frac {1}{\left (1+6 e^5\right ) \left (x+3 e^5\right )}+\frac {2 \log (1-2 x)}{1+6 e^5}-\frac {12 e^5 \log (1-2 x)}{\left (1+6 e^5\right )^2}-\frac {2 \log (1-2 x)}{\left (1+6 e^5\right )^2}-\frac {\log ((1-2 x) x)}{x+3 e^5}+\frac {\left (1+12 e^5+72 e^{10}\right ) \log \left (x+3 e^5\right )}{3 e^5 \left (1+6 e^5\right )^2}-\frac {2 \log \left (x+3 e^5\right )}{1+6 e^5}+\frac {2 \log \left (x+3 e^5\right )}{\left (1+6 e^5\right )^2}-\frac {\log \left (x+3 e^5\right )}{3 e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 44
Rule 77
Rule 148
Rule 2495
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^5 (3-12 x)-x+4 x^2-x (-1+2 x) \log \left (x-2 x^2\right )}{(1-2 x) x \left (3 e^5+x\right )^2} \, dx\\ &=\int \left (\frac {1}{\left (3 e^5+x\right )^2 (-1+2 x)}-\frac {4 x}{\left (3 e^5+x\right )^2 (-1+2 x)}-\frac {3 e^5 (-1+4 x)}{x \left (3 e^5+x\right )^2 (-1+2 x)}+\frac {\log ((1-2 x) x)}{\left (3 e^5+x\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {x}{\left (3 e^5+x\right )^2 (-1+2 x)} \, dx\right )-\left (3 e^5\right ) \int \frac {-1+4 x}{x \left (3 e^5+x\right )^2 (-1+2 x)} \, dx+\int \frac {1}{\left (3 e^5+x\right )^2 (-1+2 x)} \, dx+\int \frac {\log ((1-2 x) x)}{\left (3 e^5+x\right )^2} \, dx\\ &=-\frac {\log ((1-2 x) x)}{3 e^5+x}-2 \int \frac {1}{(1-2 x) \left (3 e^5+x\right )} \, dx-4 \int \left (\frac {3 e^5}{\left (1+6 e^5\right ) \left (3 e^5+x\right )^2}-\frac {1}{\left (1+6 e^5\right )^2 \left (3 e^5+x\right )}+\frac {2}{\left (1+6 e^5\right )^2 (-1+2 x)}\right ) \, dx-\left (3 e^5\right ) \int \left (\frac {1}{9 e^{10} x}+\frac {-1-12 e^5}{3 e^5 \left (1+6 e^5\right ) \left (3 e^5+x\right )^2}+\frac {-1-12 e^5-72 e^{10}}{9 e^{10} \left (1+6 e^5\right )^2 \left (3 e^5+x\right )}+\frac {8}{\left (1+6 e^5\right )^2 (-1+2 x)}\right ) \, dx+\int \frac {1}{x \left (3 e^5+x\right )} \, dx+\int \left (-\frac {1}{\left (1+6 e^5\right ) \left (3 e^5+x\right )^2}-\frac {2}{\left (1+6 e^5\right )^2 \left (3 e^5+x\right )}+\frac {4}{\left (1+6 e^5\right )^2 (-1+2 x)}\right ) \, dx\\ &=\frac {1}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}+\frac {12 e^5}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}-\frac {1+12 e^5}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}-\frac {2 \log (1-2 x)}{\left (1+6 e^5\right )^2}-\frac {12 e^5 \log (1-2 x)}{\left (1+6 e^5\right )^2}-\frac {\log (x)}{3 e^5}-\frac {\log ((1-2 x) x)}{3 e^5+x}+\frac {2 \log \left (3 e^5+x\right )}{\left (1+6 e^5\right )^2}+\frac {\left (1+12 e^5+72 e^{10}\right ) \log \left (3 e^5+x\right )}{3 e^5 \left (1+6 e^5\right )^2}+\frac {\int \frac {1}{x} \, dx}{3 e^5}-\frac {\int \frac {1}{3 e^5+x} \, dx}{3 e^5}-\frac {2 \int \frac {1}{3 e^5+x} \, dx}{1+6 e^5}-\frac {4 \int \frac {1}{1-2 x} \, dx}{1+6 e^5}\\ &=\frac {1}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}+\frac {12 e^5}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}-\frac {1+12 e^5}{\left (1+6 e^5\right ) \left (3 e^5+x\right )}-\frac {2 \log (1-2 x)}{\left (1+6 e^5\right )^2}-\frac {12 e^5 \log (1-2 x)}{\left (1+6 e^5\right )^2}+\frac {2 \log (1-2 x)}{1+6 e^5}-\frac {\log ((1-2 x) x)}{3 e^5+x}-\frac {\log \left (3 e^5+x\right )}{3 e^5}+\frac {2 \log \left (3 e^5+x\right )}{\left (1+6 e^5\right )^2}-\frac {2 \log \left (3 e^5+x\right )}{1+6 e^5}+\frac {\left (1+12 e^5+72 e^{10}\right ) \log \left (3 e^5+x\right )}{3 e^5 \left (1+6 e^5\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 19, normalized size = 0.90 \begin {gather*} -\frac {\log ((1-2 x) x)}{3 e^5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 18, normalized size = 0.86 \begin {gather*} -\frac {\log \left (-2 \, x^{2} + x\right )}{x + 3 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.86 \begin {gather*} -\frac {\log \left (-2 \, x^{2} + x\right )}{x + 3 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.90
method | result | size |
norman | \(-\frac {\ln \left (-2 x^{2}+x \right )}{x +3 \,{\mathrm e}^{5}}\) | \(19\) |
risch | \(-\frac {\ln \left (-2 x^{2}+x \right )}{x +3 \,{\mathrm e}^{5}}\) | \(19\) |
default | \(\frac {\left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (9 \,{\mathrm e}^{10}+6 \textit {\_Z} \,{\mathrm e}^{5}+\textit {\_Z}^{2}\right )}{\sum }\left (\frac {\underline {\hspace {1.25 ex}}\alpha }{\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+\frac {3 \,{\mathrm e}^{5}}{\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}\right ) \left (\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (-2 x^{2}+x \right )-\dilog \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )-\dilog \left (\frac {2 x -1}{2 \underline {\hspace {1.25 ex}}\alpha -1}\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {2 x -1}{2 \underline {\hspace {1.25 ex}}\alpha -1}\right )\right )\right )}{18}+\frac {4 \ln \left (x +3 \,{\mathrm e}^{5}\right )}{6 \,{\mathrm e}^{5}+1}+\frac {\ln \left (x +3 \,{\mathrm e}^{5}\right )}{3 \,{\mathrm e}^{5} \left (6 \,{\mathrm e}^{5}+1\right )}-\frac {2 \ln \left (2 x -1\right )}{6 \,{\mathrm e}^{5}+1}-\frac {\ln \relax (x )}{3 \,{\mathrm e}^{5}}\) | \(189\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 303, normalized size = 14.43 \begin {gather*} -\frac {1}{3} \, {\left (e^{\left (-10\right )} \log \relax (x) - \frac {{\left (12 \, e^{5} + 1\right )} \log \left (x + 3 \, e^{5}\right )}{36 \, e^{20} + 12 \, e^{15} + e^{10}} - \frac {36 \, \log \left (2 \, x - 1\right )}{36 \, e^{10} + 12 \, e^{5} + 1} + \frac {3}{x {\left (6 \, e^{10} + e^{5}\right )} + 18 \, e^{15} + 3 \, e^{10}}\right )} e^{5} - 12 \, {\left (\frac {2 \, \log \left (2 \, x - 1\right )}{36 \, e^{10} + 12 \, e^{5} + 1} - \frac {2 \, \log \left (x + 3 \, e^{5}\right )}{36 \, e^{10} + 12 \, e^{5} + 1} + \frac {1}{x {\left (6 \, e^{5} + 1\right )} + 18 \, e^{10} + 3 \, e^{5}}\right )} e^{5} + \frac {1}{3} \, e^{\left (-5\right )} \log \relax (x) - \frac {{\left (12 \, e^{5} + 1\right )} \log \left (x + 3 \, e^{5}\right )}{3 \, {\left (6 \, e^{10} + e^{5}\right )}} - \frac {{\left (6 \, e^{5} + 1\right )} \log \relax (x) - {\left (2 \, x - 1\right )} \log \left (-2 \, x + 1\right )}{x {\left (6 \, e^{5} + 1\right )} + 18 \, e^{10} + 3 \, e^{5}} + \frac {12 \, e^{5}}{x {\left (6 \, e^{5} + 1\right )} + 18 \, e^{10} + 3 \, e^{5}} - \frac {2 \, \log \left (2 \, x - 1\right )}{36 \, e^{10} + 12 \, e^{5} + 1} + \frac {2 \, \log \left (x + 3 \, e^{5}\right )}{36 \, e^{10} + 12 \, e^{5} + 1} + \frac {1}{x {\left (6 \, e^{5} + 1\right )} + 18 \, e^{10} + 3 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 18, normalized size = 0.86 \begin {gather*} -\frac {\ln \left (x-2\,x^2\right )}{x+3\,{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 15, normalized size = 0.71 \begin {gather*} - \frac {\log {\left (- 2 x^{2} + x \right )}}{x + 3 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________