Optimal. Leaf size=22 \[ \frac {(4+4 x)^2 \log (x)}{\frac {1}{5}+2 (26+\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 42, normalized size of antiderivative = 1.91, number of steps used = 20, number of rules used = 12, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.218, Rules used = {6688, 12, 6742, 2353, 2297, 2299, 2178, 2302, 30, 2306, 2309, 2330} \begin {gather*} -\frac {2088 x^2}{10 \log (x)+261}+8 (x+1)^2-\frac {4176 x}{10 \log (x)+261}-\frac {2088}{10 \log (x)+261} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2297
Rule 2299
Rule 2302
Rule 2306
Rule 2309
Rule 2330
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {80 (1+x) \left (261 (1+x)+522 x \log (x)+20 x \log ^2(x)\right )}{x (261+10 \log (x))^2} \, dx\\ &=80 \int \frac {(1+x) \left (261 (1+x)+522 x \log (x)+20 x \log ^2(x)\right )}{x (261+10 \log (x))^2} \, dx\\ &=80 \int \left (\frac {1+x}{5}+\frac {261 (1+x)^2}{x (261+10 \log (x))^2}-\frac {261 (1+x)}{5 (261+10 \log (x))}\right ) \, dx\\ &=8 (1+x)^2-4176 \int \frac {1+x}{261+10 \log (x)} \, dx+20880 \int \frac {(1+x)^2}{x (261+10 \log (x))^2} \, dx\\ &=8 (1+x)^2-4176 \int \left (\frac {1}{261+10 \log (x)}+\frac {x}{261+10 \log (x)}\right ) \, dx+20880 \int \left (\frac {2}{(261+10 \log (x))^2}+\frac {1}{x (261+10 \log (x))^2}+\frac {x}{(261+10 \log (x))^2}\right ) \, dx\\ &=8 (1+x)^2-4176 \int \frac {1}{261+10 \log (x)} \, dx-4176 \int \frac {x}{261+10 \log (x)} \, dx+20880 \int \frac {1}{x (261+10 \log (x))^2} \, dx+20880 \int \frac {x}{(261+10 \log (x))^2} \, dx+41760 \int \frac {1}{(261+10 \log (x))^2} \, dx\\ &=8 (1+x)^2-\frac {4176 x}{261+10 \log (x)}-\frac {2088 x^2}{261+10 \log (x)}+2088 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,261+10 \log (x)\right )+4176 \int \frac {1}{261+10 \log (x)} \, dx+4176 \int \frac {x}{261+10 \log (x)} \, dx-4176 \operatorname {Subst}\left (\int \frac {e^x}{261+10 x} \, dx,x,\log (x)\right )-4176 \operatorname {Subst}\left (\int \frac {e^{2 x}}{261+10 x} \, dx,x,\log (x)\right )\\ &=8 (1+x)^2-\frac {2088 \text {Ei}\left (\frac {1}{10} (261+10 \log (x))\right )}{5 e^{261/10}}-\frac {2088 \text {Ei}\left (\frac {1}{5} (261+10 \log (x))\right )}{5 e^{261/5}}-\frac {2088}{261+10 \log (x)}-\frac {4176 x}{261+10 \log (x)}-\frac {2088 x^2}{261+10 \log (x)}+4176 \operatorname {Subst}\left (\int \frac {e^x}{261+10 x} \, dx,x,\log (x)\right )+4176 \operatorname {Subst}\left (\int \frac {e^{2 x}}{261+10 x} \, dx,x,\log (x)\right )\\ &=8 (1+x)^2-\frac {2088}{261+10 \log (x)}-\frac {4176 x}{261+10 \log (x)}-\frac {2088 x^2}{261+10 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 20, normalized size = 0.91 \begin {gather*} \frac {80 (-261+10 x (2+x) \log (x))}{2610+100 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 23, normalized size = 1.05 \begin {gather*} \frac {8 \, {\left (10 \, {\left (x^{2} + 2 \, x\right )} \log \relax (x) - 261\right )}}{10 \, \log \relax (x) + 261} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 1.23 \begin {gather*} 8 \, x^{2} + 16 \, x - \frac {2088 \, {\left (x^{2} + 2 \, x + 1\right )}}{10 \, \log \relax (x) + 261} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.09
method | result | size |
norman | \(\frac {160 x \ln \relax (x )+80 x^{2} \ln \relax (x )-2088}{10 \ln \relax (x )+261}\) | \(24\) |
risch | \(8 x^{2}+16 x -\frac {2088 \left (x^{2}+2 x +1\right )}{10 \ln \relax (x )+261}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 30, normalized size = 1.36 \begin {gather*} \frac {80 \, {\left (x^{2} + 2 \, x\right )} \log \relax (x)}{10 \, \log \relax (x) + 261} - \frac {2088}{10 \, \log \relax (x) + 261} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 23, normalized size = 1.05 \begin {gather*} 8\,{\left (x+1\right )}^2-\frac {2088\,{\left (x+1\right )}^2}{10\,\ln \relax (x)+261} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 26, normalized size = 1.18 \begin {gather*} 8 x^{2} + 16 x + \frac {- 2088 x^{2} - 4176 x - 2088}{10 \log {\relax (x )} + 261} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________