Optimal. Leaf size=21 \[ i \pi +x^{2 (-5+x)}+\log \left (-\frac {5}{2}+e^6\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int x^{-11+2 x} (-10+2 x+2 x \log (x)) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 x^{-11+2 x} (-5+x+x \log (x)) \, dx\\ &=2 \int x^{-11+2 x} (-5+x+x \log (x)) \, dx\\ &=2 \int \left (-5 x^{-11+2 x}+x^{-10+2 x}+x^{-10+2 x} \log (x)\right ) \, dx\\ &=2 \int x^{-10+2 x} \, dx+2 \int x^{-10+2 x} \log (x) \, dx-10 \int x^{-11+2 x} \, dx\\ &=2 \int x^{-10+2 x} \, dx-2 \int \frac {\int x^{-10+2 x} \, dx}{x} \, dx-10 \int x^{-11+2 x} \, dx+(2 \log (x)) \int x^{-10+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 7, normalized size = 0.33 \begin {gather*} x^{-10+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 7, normalized size = 0.33 \begin {gather*} x^{2 \, x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 7, normalized size = 0.33 \begin {gather*} x^{2 \, x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 8, normalized size = 0.38
method | result | size |
risch | \(x^{2 x -10}\) | \(8\) |
norman | \({\mathrm e}^{\left (2 x -10\right ) \ln \relax (x )}\) | \(10\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 9, normalized size = 0.43 \begin {gather*} \frac {x^{2 \, x}}{x^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 7, normalized size = 0.33 \begin {gather*} x^{2\,x-10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 8, normalized size = 0.38 \begin {gather*} e^{\left (2 x - 10\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________