Optimal. Leaf size=22 \[ \frac {6}{-e^5+2 x-(25-2 x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {150-24 x-12 x \log (x)}{e^{10} x-4 e^5 x^2+4 x^3+\left (-100 x^2+8 x^3+e^5 \left (50 x-4 x^2\right )\right ) \log (x)+\left (625 x-100 x^2+4 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 (25-4 x-2 x \log (x))}{x \left (e^5-2 x+(25-2 x) \log (x)\right )^2} \, dx\\ &=6 \int \frac {25-4 x-2 x \log (x)}{x \left (e^5-2 x+(25-2 x) \log (x)\right )^2} \, dx\\ &=6 \int \left (\frac {625-2 \left (75-e^5\right ) x+4 x^2}{(25-2 x) x \left (e^5-2 x+25 \log (x)-2 x \log (x)\right )^2}-\frac {2}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )}\right ) \, dx\\ &=6 \int \frac {625-2 \left (75-e^5\right ) x+4 x^2}{(25-2 x) x \left (e^5-2 x+25 \log (x)-2 x \log (x)\right )^2} \, dx-12 \int \frac {1}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )} \, dx\\ &=6 \int \left (-\frac {2}{\left (e^5-2 x+25 \log (x)-2 x \log (x)\right )^2}+\frac {25}{x \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )^2}-\frac {2 \left (-25+e^5\right )}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )^2}\right ) \, dx-12 \int \frac {1}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )} \, dx\\ &=-\left (12 \int \frac {1}{\left (e^5-2 x+25 \log (x)-2 x \log (x)\right )^2} \, dx\right )-12 \int \frac {1}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )} \, dx+150 \int \frac {1}{x \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )^2} \, dx+\left (12 \left (25-e^5\right )\right ) \int \frac {1}{(-25+2 x) \left (-e^5+2 x-25 \log (x)+2 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 19, normalized size = 0.86 \begin {gather*} -\frac {6}{e^5-2 x+(25-2 x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 20, normalized size = 0.91 \begin {gather*} \frac {6}{{\left (2 \, x - 25\right )} \log \relax (x) + 2 \, x - e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.95 \begin {gather*} \frac {6}{2 \, x \log \relax (x) + 2 \, x - e^{5} - 25 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 20, normalized size = 0.91
method | result | size |
norman | \(-\frac {6}{-2 x \ln \relax (x )+{\mathrm e}^{5}-2 x +25 \ln \relax (x )}\) | \(20\) |
risch | \(-\frac {6}{-2 x \ln \relax (x )+{\mathrm e}^{5}-2 x +25 \ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 20, normalized size = 0.91 \begin {gather*} \frac {6}{{\left (2 \, x - 25\right )} \log \relax (x) + 2 \, x - e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.83, size = 36, normalized size = 1.64 \begin {gather*} \frac {6\,{\mathrm {e}}^{-5}\,\left (2\,x-25\,\ln \relax (x)+2\,x\,\ln \relax (x)\right )}{2\,x-{\mathrm {e}}^5-25\,\ln \relax (x)+2\,x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 15, normalized size = 0.68 \begin {gather*} \frac {6}{2 x + \left (2 x - 25\right ) \log {\relax (x )} - e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________