Optimal. Leaf size=27 \[ \frac {e^3}{4 \left (5+e^{9+x}+4 x^2+\log \left (2 x^3\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6688, 12, 6686} \begin {gather*} \frac {e^3}{4 \left (\log \left (2 x^3\right )+4 x^2+e^{x+9}+5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (-3-e^{9+x} x-8 x^2\right )}{4 x \left (5+e^{9+x}+4 x^2+\log \left (2 x^3\right )\right )^2} \, dx\\ &=\frac {1}{4} e^3 \int \frac {-3-e^{9+x} x-8 x^2}{x \left (5+e^{9+x}+4 x^2+\log \left (2 x^3\right )\right )^2} \, dx\\ &=\frac {e^3}{4 \left (5+e^{9+x}+4 x^2+\log \left (2 x^3\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.00 \begin {gather*} \frac {e^3}{4 \left (5+e^{9+x}+4 x^2+\log \left (2 x^3\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 30, normalized size = 1.11 \begin {gather*} \frac {e^{6}}{4 \, {\left ({\left (4 \, x^{2} + 5\right )} e^{3} + e^{3} \log \left (2 \, x^{3}\right ) + e^{\left (x + 12\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 23, normalized size = 0.85 \begin {gather*} \frac {e^{3}}{4 \, {\left (4 \, x^{2} + e^{\left (x + 9\right )} + \log \relax (2) + 3 \, \log \relax (x) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 146, normalized size = 5.41
method | result | size |
risch | \(\frac {i {\mathrm e}^{3}}{2 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+12 i \ln \relax (x )+16 i x^{2}+4 i \ln \relax (2)+4 i {\mathrm e}^{x +9}+20 i}\) | \(146\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 23, normalized size = 0.85 \begin {gather*} \frac {e^{3}}{4 \, {\left (4 \, x^{2} + e^{\left (x + 9\right )} + \log \relax (2) + 3 \, \log \relax (x) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 26, normalized size = 0.96 \begin {gather*} \frac {{\mathrm {e}}^3}{4\,\left ({\mathrm {e}}^{x+9}+\ln \left (2\,x^3\right )+4\,x^2+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 0.89 \begin {gather*} \frac {e^{3}}{16 x^{2} + 4 e^{x + 9} + 4 \log {\left (2 x^{3} \right )} + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________